9,310 research outputs found

    Robust and real-time control of magnetic bearings for space engines

    Get PDF
    Currently, NASA Lewis Research Center is developing magnetic bearings for Space Shuttle Main Engine (SSME) turbopumps. The control algorithms which have been used are based on either the proportional-intergral-derivative control (PID) approach or the linear quadratic (LQ) state space approach. These approaches lead to an acceptable performance only when the system model is accurately known, which is seldom true in practice. For example, the rotor eccentricity, which is a major source of vibration at high speeds, cannot be predicted accurately. Furthermore, the dynamics of a rotor shaft, which must be treated as a flexible system to model the elastic rotor shaft, is infinite dimensional in theory and the controller can only be developed on the basis of a finite number of modes. Therefore, the development of the control system is further complicated by the possibility of closed loop system instability because of residual or uncontrolled modes, the so called spillover problem. Consequently, novel control algorithms for magnetic bearings are being developed to be robust to inevitable parametric uncertainties, external disturbances, spillover phenomenon and noise. Also, as pointed out earlier, magnetic bearings must exhibit good performance at a speed over 30,000 rpm. This implies that the sampling period available for the design of a digital control system has to be of the order of 0.5 milli-seconds. Therefore, feedback coefficients and other required controller parameters have to be computed off-line so that the on-line computational burden is extremely small. The development of the robust and real-time control algorithms is based on the sliding mode control theory. In this method, a dynamic system is made to move along a manifold of sliding hyperplanes to the origin of the state space. The number of sliding hyperplanes equals that of actuators. The sliding mode controller has two parts; linear state feedback and nonlinear terms. The nonlinear terms guarantee that the systems would reach the intersection of all sliding hyperplanes and remain on it when bounds on the errors in the system parameters and external disturbances are known. The linear part of the control drives the system to the origin of state space. Another important feature is that the controller parameter can be computed off-line. Consequently, on-line computational burden is small

    A Hybrid Nonlinear Control Scheme for Active Magnetic Bearings

    Get PDF
    A nonlinear control scheme for active magnetic bearings is presented in this work. Magnet winding currents are chosen as control inputs for the electromechanical dynamics, which are linearized using feedback linearization. Then, the desired magnet currents are enforced by sliding mode control design of the electromagnetic dynamics. The overall control scheme is described by a multiple loop block diagram; the approach also falls in the class of nonlinear controls that are collectively known as the 'integrator backstepping' method. Control system hardware and new switching power electronics for implementing the controller are described. Various experiments and simulation results are presented to demonstrate the concepts' potentials

    Application Of Nonlinear Models For A Well-defined Description Of The Dynamics Of Rotors In Magnetic Bearings

    Get PDF
    A research report has been submitted. It deals with implementing a method for a mathematical description of the nonlinear dynamics of rotors in magnetic bearings of different types (passive and active). The method is based on Lagrange-Maxwell differential equations in a form similar to that of Routh equations in mechanics. The mathematical models account for such nonlinearities as the nonlinear dependencies of magnetic forces on gaps in passive and active magnetic bearings and on currents in the windings of electromagnets; nonlinearities related to the inductances in coils; the geometric link between the electromagnets in one AMB and the link between all AMBs in one rotor, which results in relatedness of processes in orthogonal directions, and other factors. The suggested approach made it possible to detect and investigate different phenomena in nonlinear rotor dynamics. The method adequacy has been confirmed experimentally on a laboratory setup, which is a prototype of a complete combined magnetic-electromagnetic suspension in small-size rotor machinery. Different variants of linearizing the equations of motion have been considered. They provide for both linearization of restoring magnetic or electromagnetic forces in passive and active magnetic bearings, and exclusion of nonlinear motion equation terms. Calculation results for several linearization variants have been obtained. An appraisal of results identified the drawbacks of linearized mathematical models and allowed drawing a conclusion on the necessity of applying nonlinear models for a well-defined description of the dynamics of rotor systems with magnetic bearings

    Further Results on Active Magnetic Bearing Control with Input Saturation

    Full text link
    We study the low-bias stabilization of active magnetic bearings (AMBs) subject to voltage saturation based on a recently proposed model for the AMB switching mode of operation. Using a forwarding-like approach, we construct a stabilizing controller of arbitrarily small amplitude and a control-Lyapunov function for the AMB dynamics. We illustrate our construction using a numerical example.Comment: 9 pages, 2 figures. IEEE Transactions on Control Systems Technology, accepted for publication in January 200

    Multi - objective sliding mode control of active magnetic bearing system

    Get PDF
    Active Magnetic Bearing (AMB) system is known to inherit many nonlinearity effects due to its rotor dynamic motion and the electromagnetic actuators which make the system highly nonlinear, coupled and open-loop unstable. The major nonlinearities that are associated with AMB system are gyroscopic effect, rotor mass imbalance and nonlinear electromagnetics in which the gyroscopics and imbalance are dependent to the rotational speed of the rotor. In order to provide satisfactory system performance for a wide range of system condition, active control is thus essential. The main concern of the thesis is the modeling of the nonlinear AMB system and synthesizing a robust control method based on Sliding Mode Control (SMC) technique such that the system can achieve robust performance under various system nonlinearities. The model of the AMB system is developed based on the integration of the rotor and electromagnetic dynamics which forms nonlinear time varying state equations that represent a reasonably close description of the actual system. Based on the known bound of the system parameters and state variables, the model is restructured to become a class of uncertain system by using a deterministic approach. In formulating the control algorithm to control the system, SMC theory is adapted which involves the formulation of the sliding surface and the control law such that the state trajectories are driven to the stable sliding manifold. The surface design involves the transformation of the system into a special canonical representation such that the sliding motion can be characterized by a convex representation of the desired system performances. Optimal Linear Quadratic (LQ) characteristics and regional pole-clustering of the closed-loop poles are designed to be the objectives to be fulfilled in the surface design where the formulation is represented as a set of Linear Matrix Inequality optimization problem. For the control law design, a new continuous SMC controller is proposed in which asymptotic convergence of the system’s state trajectories in finite time is guaranteed. This is achieved by adapting the equivalent control approach with the exponential decaying boundary layer technique. The newly designed sliding surface and control law form the complete Multi-objective SMC (MO-SMC) and the proposed algorithm is applied into the nonlinear AMB in which the results show that robust system performance is achieved for various system conditions. The findings also demonstrate that the MO-SMC gives better system response than the reported ideal SMC (I-SMC) and continuous SMC (C-SMC)

    Robust magnetic bearing control using stabilizing dynamical compensators

    Get PDF
    Abstract—This paper considers the robust control of an active radial magnetic bearing system, having a homopolar, external rotor topology, which is used to support an annular fiber composite flywheel rim. A first-order dynamical compensator, which uses only position feedback information, is used for control, its design being based on a linearized one-dimensional second-order model which is treated as an interval system in order to cope with parameter uncertainties. Through robust stability analysis, a parameterization of all first-order robustly stabilizing dynamical compensators for the interval system is initially obtained. Then, by appropriate selection of the free parameters in the robust controller, the H2 norm of the disturbance-output transfer function is made arbitrarily small over the system parameter intervals, and the norm of the input–output transfer function is made arbitrarily close to a lower bound. Simulation and experimental results demonstrate both stability and performance robustness of the developed controller

    Robust active magnetic dearing control using stabilizing dynamical compensators

    Get PDF
    The robust control of active magnetic bearings, based on a linearised interval model, is considered. Through robust stability analysis, all the first-order robust stabilizing dynamical compensators for the interval system are obtained. Disturbance attenuation and minimum control effort are also addressed. The approach is applied to a high-speed flywheel supported by two active and two passive magnetic bearings. Simulation and experimental results both show that it is simple, effective, and robust
    • …
    corecore