35,745 research outputs found

    Accelerated graph-based nonlinear denoising filters

    Get PDF
    Denoising filters, such as bilateral, guided, and total variation filters, applied to images on general graphs may require repeated application if noise is not small enough. We formulate two acceleration techniques of the resulted iterations: conjugate gradient method and Nesterov's acceleration. We numerically show efficiency of the accelerated nonlinear filters for image denoising and demonstrate 2-12 times speed-up, i.e., the acceleration techniques reduce the number of iterations required to reach a given peak signal-to-noise ratio (PSNR) by the above indicated factor of 2-12.Comment: 10 pages, 6 figures, to appear in Procedia Computer Science, vol.80, 2016, International Conference on Computational Science, San Diego, CA, USA, June 6-8, 201

    Composing Scalable Nonlinear Algebraic Solvers

    Get PDF
    Most efficient linear solvers use composable algorithmic components, with the most common model being the combination of a Krylov accelerator and one or more preconditioners. A similar set of concepts may be used for nonlinear algebraic systems, where nonlinear composition of different nonlinear solvers may significantly improve the time to solution. We describe the basic concepts of nonlinear composition and preconditioning and present a number of solvers applicable to nonlinear partial differential equations. We have developed a software framework in order to easily explore the possible combinations of solvers. We show that the performance gains from using composed solvers can be substantial compared with gains from standard Newton-Krylov methods.Comment: 29 pages, 14 figures, 13 table

    Objective acceleration for unconstrained optimization

    Full text link
    Acceleration schemes can dramatically improve existing optimization procedures. In most of the work on these schemes, such as nonlinear Generalized Minimal Residual (N-GMRES), acceleration is based on minimizing the â„“2\ell_2 norm of some target on subspaces of Rn\mathbb{R}^n. There are many numerical examples that show how accelerating general purpose and domain-specific optimizers with N-GMRES results in large improvements. We propose a natural modification to N-GMRES, which significantly improves the performance in a testing environment originally used to advocate N-GMRES. Our proposed approach, which we refer to as O-ACCEL (Objective Acceleration), is novel in that it minimizes an approximation to the \emph{objective function} on subspaces of Rn\mathbb{R}^n. We prove that O-ACCEL reduces to the Full Orthogonalization Method for linear systems when the objective is quadratic, which differentiates our proposed approach from existing acceleration methods. Comparisons with L-BFGS and N-CG indicate the competitiveness of O-ACCEL. As it can be combined with domain-specific optimizers, it may also be beneficial in areas where L-BFGS or N-CG are not suitable.Comment: 18 pages, 6 figures, 5 table

    Regularized Nonlinear Acceleration

    Get PDF
    We describe a convergence acceleration technique for unconstrained optimization problems. Our scheme computes estimates of the optimum from a nonlinear average of the iterates produced by any optimization method. The weights in this average are computed via a simple linear system, whose solution can be updated online. This acceleration scheme runs in parallel to the base algorithm, providing improved estimates of the solution on the fly, while the original optimization method is running. Numerical experiments are detailed on classical classification problems
    • …
    corecore