12,773 research outputs found

    Wide Field Imaging. I. Applications of Neural Networks to object detection and star/galaxy classification

    Get PDF
    [Abriged] Astronomical Wide Field Imaging performed with new large format CCD detectors poses data reduction problems of unprecedented scale which are difficult to deal with traditional interactive tools. We present here NExt (Neural Extractor): a new Neural Network (NN) based package capable to detect objects and to perform both deblending and star/galaxy classification in an automatic way. Traditionally, in astronomical images, objects are first discriminated from the noisy background by searching for sets of connected pixels having brightnesses above a given threshold and then they are classified as stars or as galaxies through diagnostic diagrams having variables choosen accordingly to the astronomer's taste and experience. In the extraction step, assuming that images are well sampled, NExt requires only the simplest a priori definition of "what an object is" (id est, it keeps all structures composed by more than one pixels) and performs the detection via an unsupervised NN approaching detection as a clustering problem which has been thoroughly studied in the artificial intelligence literature. In order to obtain an objective and reliable classification, instead of using an arbitrarily defined set of features, we use a NN to select the most significant features among the large number of measured ones, and then we use their selected features to perform the classification task. In order to optimise the performances of the system we implemented and tested several different models of NN. The comparison of the NExt performances with those of the best detection and classification package known to the authors (SExtractor) shows that NExt is at least as effective as the best traditional packages.Comment: MNRAS, in press. Paper with higher resolution images is available at http://www.na.astro.it/~andreon/listapub.htm

    Sequential Detection of Linear Features in Two-Dimensional Random Fields

    Get PDF
    The detection of edges, lines, and other linear features in two-dimensional discrete images is a low level processing step of fundamental importance in the automatic processing of such data. Many subsequent tasks in computer vision, pattern recognition, and image processing depend on the successful execution of this step. In this thesis, we will address one class of techniques for performing this task: sequential detection. Our aims are fourfold. First, we would like to discuss the use of sequential techniques as an attractive alternative to the somewhat better known methods of approaching this problem. Although several researchers have obtained significant results with sequential type algorithms, the inherent benefits of a sequential approach would appear to have gone largely unappreciated. Secondly, the sequential techniques reported to date appear somewhat lacking with respect to a theoretical foundation. Furthermore, the theory that is advanced incorporates rather severe restrictions on the types of images to which it applies, thus imposing a significant limitation to the generality of the method(s). We seek to advance a more general theory with minimal assumptions regarding the input image. A third goal is to utilize this newly developed theory to obtain quantitative assessments of the performance of the method. This important step, which depends on a computational theory, can answer such vital questions as: Are assumptions about the qualitative behavior of the method justified? How does signal-to-noise ratio impact its behavior? How fast is it? How accurate? The state of theoretical development of present techniques does not allow for this type of analysis. Finally, a fourth aim is to\u27 extend the earlier results to include correlated image data. Present sequential methods as well as many non-sequential methods assume that the image data is uncorrelated and cannot therefore make use of the mutual information between pixels in real-world images. We would like to extend the theory to incorporate correlated images and demonstrate the advantages incurred by the use of the existing mutual information. The topics to be discussed are organized in the following manner. We will first provide a rather general discussion of the problem of detecting intensity edges in images. The edge detection problem will serve as the prototypical problem of linear feature extraction for much of this thesis. It will later be shown that the detection of lines, ramp edges, texture edges, etc. can be handled in similar fashion to intensity edges, the only difference being the nature of the preprocessing operator used. The class of sequential techniques will then be introduced, with a view to emphasize the particular advantages and disadvantages exhibited by the class. This Chapter will conclude with a more detailed treatment of the various sequential algorithms proposed in the literature. Chapter 2 then develops the algorithm proposed by the author, Sequential Edge Linking or SEL. It begins with some definitions, follows with a derivation of the critical path branch metric and some of its properties, and concludes with a discussion of algorithms. The third Chapter is devoted exclusively to an analysis of the dynamical behavior and performance of the method. \u27 Chapter 4 then deals with the case of correlated random fields. In that Chapter, a model is proposed for which paths searched by the SEL algorithm are shown to possess a well-known autocorrelation function. This allows the use of a simple linear filter to decorrelate the raw image data. Finally, Chapter 5 presents a number of experimental results and corroboration of the theoretical conclusions of earlier Chapters. Some concluding remarks are also included in Chapter 5

    Shape-driven segmentation of the arterial wall in intravascular ultrasound images

    Get PDF
    Segmentation of arterial wall boundaries from intravascular images is an important problem for many applications in the study of plaque characteristics, mechanical properties of the arterial wall, its 3D reconstruction, and its measurements such as lumen size, lumen radius, and wall radius. We present a shape-driven approach to segmentation of the arterial wall from intravascular ultrasound images in the rectangular domain. In a properly built shape space using training data, we constrain the lumen and media-adventitia contours to a smooth, closed geometry, which increases the segmentation quality without any tradeoff with a regularizer term. In addition to a shape prior, we utilize an intensity prior through a non-parametric probability density based image energy, with global image measurements rather than pointwise measurements used in previous methods. Furthermore, a detection step is included to address the challenges introduced to the segmentation process by side branches and calcifications. All these features greatly enhance our segmentation method. The tests of our algorithm on a large dataset demonstrate the effectiveness of our approach

    Low-level processing for real-time image analysis

    Get PDF
    A system that detects object outlines in television images in real time is described. A high-speed pipeline processor transforms the raw image into an edge map and a microprocessor, which is integrated into the system, clusters the edges, and represents them as chain codes. Image statistics, useful for higher level tasks such as pattern recognition, are computed by the microprocessor. Peak intensity and peak gradient values are extracted within a programmable window and are used for iris and focus control. The algorithms implemented in hardware and the pipeline processor architecture are described. The strategy for partitioning functions in the pipeline was chosen to make the implementation modular. The microprocessor interface allows flexible and adaptive control of the feature extraction process. The software algorithms for clustering edge segments, creating chain codes, and computing image statistics are also discussed. A strategy for real time image analysis that uses this system is given

    An Automatic Level Set Based Liver Segmentation from MRI Data Sets

    Get PDF
    A fast and accurate liver segmentation method is a challenging work in medical image analysis area. Liver segmentation is an important process for computer-assisted diagnosis, pre-evaluation of liver transplantation and therapy planning of liver tumors. There are several advantages of magnetic resonance imaging such as free form ionizing radiation and good contrast visualization of soft tissue. Also, innovations in recent technology and image acquisition techniques have made magnetic resonance imaging a major tool in modern medicine. However, the use of magnetic resonance images for liver segmentation has been slow when we compare applications with the central nervous systems and musculoskeletal. The reasons are irregular shape, size and position of the liver, contrast agent effects and similarities of the gray values of neighbor organs. Therefore, in this study, we present a fully automatic liver segmentation method by using an approximation of the level set based contour evolution from T2 weighted magnetic resonance data sets. The method avoids solving partial differential equations and applies only integer operations with a two-cycle segmentation algorithm. The efficiency of the proposed approach is achieved by applying the algorithm to all slices with a constant number of iteration and performing the contour evolution without any user defined initial contour. The obtained results are evaluated with four different similarity measures and they show that the automatic segmentation approach gives successful results

    Towards multiple 3D bone surface identification and reconstruction using few 2D X-ray images for intraoperative applications

    Get PDF
    This article discusses a possible method to use a small number, e.g. 5, of conventional 2D X-ray images to reconstruct multiple 3D bone surfaces intraoperatively. Each bone’s edge contours in X-ray images are automatically identified. Sparse 3D landmark points of each bone are automatically reconstructed by pairing the 2D X-ray images. The reconstructed landmark point distribution on a surface is approximately optimal covering main characteristics of the surface. A statistical shape model, dense point distribution model (DPDM), is then used to fit the reconstructed optimal landmarks vertices to reconstruct a full surface of each bone separately. The reconstructed surfaces can then be visualised and manipulated by surgeons or used by surgical robotic systems
    corecore