7,632 research outputs found

    Segmentation-assisted detection of dirt impairments in archived film sequences

    Get PDF
    A novel segmentation-assisted method for film dirt detection is proposed. We exploit the fact that film dirt manifests in the spatial domain as a cluster of connected pixels whose intensity differs substantially from that of its neighborhood and we employ a segmentation-based approach to identify this type of structure. A key feature of our approach is the computation of a measure of confidence attached to detected dirt regions which can be utilized for performance fine tuning. Another important feature of our algorithm is the avoidance of the computational complexity associated with motion estimation. Our experimental framework benefits from the availability of manually derived as well as objective ground truth data obtained using infrared scanning. Our results demonstrate that the proposed method compares favorably with standard spatial, temporal and multistage median filtering approaches and provides efficient and robust detection for a wide variety of test material

    Detection of dirt impairments from archived film sequences : survey and evaluations

    Get PDF
    Film dirt is the most commonly encountered artifact in archive restoration applications. Since dirt usually appears as a temporally impulsive event, motion-compensated interframe processing is widely applied for its detection. However, motion-compensated prediction requires a high degree of complexity and can be unreliable when motion estimation fails. Consequently, many techniques using spatial or spatiotemporal filtering without motion were also been proposed as alternatives. A comprehensive survey and evaluation of existing methods is presented, in which both qualitative and quantitative performances are compared in terms of accuracy, robustness, and complexity. After analyzing these algorithms and identifying their limitations, we conclude with guidance in choosing from these algorithms and promising directions for future research

    Digital Color Imaging

    Full text link
    This paper surveys current technology and research in the area of digital color imaging. In order to establish the background and lay down terminology, fundamental concepts of color perception and measurement are first presented us-ing vector-space notation and terminology. Present-day color recording and reproduction systems are reviewed along with the common mathematical models used for representing these devices. Algorithms for processing color images for display and communication are surveyed, and a forecast of research trends is attempted. An extensive bibliography is provided

    Solving Inverse Problems with Piecewise Linear Estimators: From Gaussian Mixture Models to Structured Sparsity

    Full text link
    A general framework for solving image inverse problems is introduced in this paper. The approach is based on Gaussian mixture models, estimated via a computationally efficient MAP-EM algorithm. A dual mathematical interpretation of the proposed framework with structured sparse estimation is described, which shows that the resulting piecewise linear estimate stabilizes the estimation when compared to traditional sparse inverse problem techniques. This interpretation also suggests an effective dictionary motivated initialization for the MAP-EM algorithm. We demonstrate that in a number of image inverse problems, including inpainting, zooming, and deblurring, the same algorithm produces either equal, often significantly better, or very small margin worse results than the best published ones, at a lower computational cost.Comment: 30 page

    Gray-level Texture Characterization Based on a New Adaptive

    Get PDF
    In this paper, we propose a new nonlinear exponential adaptive two-dimensional (2-D) filter for texture characterization. The filter coefficients are updated with the Least Mean Square (LMS) algorithm. The proposed nonlinear model is used for texture characterization with a 2-D Auto-Regressive (AR) adaptive model. The main advantage of the new nonlinear exponential adaptive 2-D filter is the reduced number of coefficients used to characterize the nonlinear parametric models of images regarding the 2-D second-order Volterra model. Whatever the degree of the non-linearity, the problem results in the same number of coefficients as in the linear case. The characterization efficiency of the proposed exponential model is compared to the one provided by both 2-D linear and Volterra filters and the cooccurrence matrix method. The comparison is based on two criteria usually used to evaluate the features discriminating ability and the class quantification. Extensive experiments proved that the exponential model coefficients give better results in texture discrimination than several other parametric features even in a noisy context

    Automatic Structural Scene Digitalization

    Get PDF
    In this paper, we present an automatic system for the analysis and labeling of structural scenes, floor plan drawings in Computer-aided Design (CAD) format. The proposed system applies a fusion strategy to detect and recognize various components of CAD floor plans, such as walls, doors, windows and other ambiguous assets. Technically, a general rule-based filter parsing method is fist adopted to extract effective information from the original floor plan. Then, an image-processing based recovery method is employed to correct information extracted in the first step. Our proposed method is fully automatic and real-time. Such analysis system provides high accuracy and is also evaluated on a public website that, on average, archives more than ten thousands effective uses per day and reaches a relatively high satisfaction rate.Comment: paper submitted to PloS On

    Gray-level Texture Characterization Based on a New Adaptive Nonlinear Auto-Regressive Filter

    Get PDF
    In this paper, we propose a new nonlinear exponential adaptive two-dimensional (2-D) filter for texture characterization. The filter coefficients are updated with the Least Mean Square (LMS) algorithm. The proposed nonlinear model is used for texture characterization with a 2-D Auto-Regressive (AR) adaptive model. The main advantage of the new nonlinear exponential adaptive 2-D filter is the reduced number of coefficients used to characterize the nonlinear parametric models of images regarding the 2-D second-order Volterra model. Whatever the degree of the non-linearity, the problem results in the same number of coefficients as in the linear case. The characterization efficiency of the proposed exponential model is compared to the one provided by both 2-D linear and Volterra filters and the cooccurrence matrix method. The comparison is based on two criteria usually used to evaluate the features discriminating ability and the class quantification. Extensive experiments proved that the exponential model coefficients give better results in texture discrimination than several other parametric features even in a noisy context
    • …
    corecore