12,206 research outputs found

    Moment inversion problem for piecewise D-finite functions

    Full text link
    We consider the problem of exact reconstruction of univariate functions with jump discontinuities at unknown positions from their moments. These functions are assumed to satisfy an a priori unknown linear homogeneous differential equation with polynomial coefficients on each continuity interval. Therefore, they may be specified by a finite amount of information. This reconstruction problem has practical importance in Signal Processing and other applications. It is somewhat of a ``folklore'' that the sequence of the moments of such ``piecewise D-finite''functions satisfies a linear recurrence relation of bounded order and degree. We derive this recurrence relation explicitly. It turns out that the coefficients of the differential operator which annihilates every piece of the function, as well as the locations of the discontinuities, appear in this recurrence in a precisely controlled manner. This leads to the formulation of a generic algorithm for reconstructing a piecewise D-finite function from its moments. We investigate the conditions for solvability of the resulting linear systems in the general case, as well as analyze a few particular examples. We provide results of numerical simulations for several types of signals, which test the sensitivity of the proposed algorithm to noise

    Two refreshing views of Fluctuation Theorems through Kinematics Elements and Exponential Martingale

    Get PDF
    In the context of Markov evolution, we present two original approaches to obtain Generalized Fluctuation-Dissipation Theorems (GFDT), by using the language of stochastic derivatives and by using a family of exponential martingales functionals. We show that GFDT are perturbative versions of relations verified by these exponential martingales. Along the way, we prove GFDT and Fluctuation Relations (FR) for general Markov processes, beyond the usual proof for diffusion and pure jump processes. Finally, we relate the FR to a family of backward and forward exponential martingales.Comment: 41 pages, 7 figures; version2: 45 pages, 7 figures, minor revisions, new results in Section

    A bounded jump for the bounded Turing degrees

    Full text link
    We define the bounded jump of A by A^b = {x | Exists i <= x [phi_i (x) converges and Phi_x^[A|phi_i(x)](x) converges} and let A^[nb] denote the n-th bounded jump. We demonstrate several properties of the bounded jump, including that it is strictly increasing and order preserving on the bounded Turing (bT) degrees (also known as the weak truth-table degrees). We show that the bounded jump is related to the Ershov hierarchy. Indeed, for n > 1 we have X <=_[bT] 0^[nb] iff X is omega^n-c.e. iff X <=_1 0^[nb], extending the classical result that X <=_[bT] 0' iff X is omega-c.e. Finally, we prove that the analogue of Shoenfield inversion holds for the bounded jump on the bounded Turing degrees. That is, for every X such that 0^b <=_[bT] X <=_[bT] 0^[2b], there is a Y <=_[bT] 0^b such that Y^b =_[bT] X.Comment: 22 pages. Minor changes for publicatio

    A Galois connection between Turing jumps and limits

    Full text link
    Limit computable functions can be characterized by Turing jumps on the input side or limits on the output side. As a monad of this pair of adjoint operations we obtain a problem that characterizes the low functions and dually to this another problem that characterizes the functions that are computable relative to the halting problem. Correspondingly, these two classes are the largest classes of functions that can be pre or post composed to limit computable functions without leaving the class of limit computable functions. We transfer these observations to the lattice of represented spaces where it leads to a formal Galois connection. We also formulate a version of this result for computable metric spaces. Limit computability and computability relative to the halting problem are notions that coincide for points and sequences, but even restricted to continuous functions the former class is strictly larger than the latter. On computable metric spaces we can characterize the functions that are computable relative to the halting problem as those functions that are limit computable with a modulus of continuity that is computable relative to the halting problem. As a consequence of this result we obtain, for instance, that Lipschitz continuous functions that are limit computable are automatically computable relative to the halting problem. We also discuss 1-generic points as the canonical points of continuity of limit computable functions, and we prove that restricted to these points limit computable functions are computable relative to the halting problem. Finally, we demonstrate how these results can be applied in computable analysis

    Stability estimates for the fault inverse problem

    Full text link
    We study in this paper stability estimates for the fault inverse problem. In this problem, faults are assumed to be planar open surfaces in a half space elastic medium with known Lam\'e coefficients. A traction free condition is imposed on the boundary of the half space. Displacement fields present jumps across faults, called slips, while traction derivatives are continuous. It was proved in \cite{volkov2017reconstruction} that if the displacement field is known on an open set on the boundary of the half space, then the fault and the slip are uniquely determined. In this present paper, we study the stability of this uniqueness result with regard to the coefficients of the equation of the plane containing the fault. If the slip field is known we state and prove a Lipschitz stability result. In the more interesting case where the slip field is unknown, we state and prove another Lipschitz stability result under the additional assumption, which is still physically relevant, that the slip field is one directional
    corecore