35,642 research outputs found

    Inverse form finding with h-adaptivity and an application to a notch stamping process

    Get PDF
    The aim is to determine the optimized semi-finished workpiece geometry to its given target geometry after a forming process. Hereby, a novel approach for inverse form finding, a type of a shape optimization, is applied to a notch stamping process. As a special feature, h-adaptive mesh refinement is considered within the iteratively performed forming simulation

    A non-invasive node-based form finding approach with discretization-independent target configuration

    Get PDF
    Form finding is used to optimize the shape of a semi-finished product, i.e. the material configuration in a forming process. The geometry of the semi-finished product is adapted so that the computed spatial configuration corresponds to a prescribed target spatial configuration. Differences between these two configurations are iteratively minimized. The algorithm works non-invasively, thus there is a strict separation between the form update and the finite element (FE) forming simulation. This separation allows the use of arbitrary commercial FE-solvers. In particular, there is no need for a modification of the FE forming simulation, only the material configuration is iteratively updated. A new method is introduced to calculate the difference between the target and the computed spatial configuration. Thereby the target mesh is separated from the mesh for the FE forming simulation, which enables a more accurate and independent representation of the target configuration. In addition, the possibility of taking into account manufacturing constraints in the optimization process is presented. The procedure is illustrated for the example of the first stage of a novel two-stage sheet-bulk metal forming process

    Memory formation in matter

    Get PDF
    Memory formation in matter is a theme of broad intellectual relevance; it sits at the interdisciplinary crossroads of physics, biology, chemistry, and computer science. Memory connotes the ability to encode, access, and erase signatures of past history in the state of a system. Once the system has completely relaxed to thermal equilibrium, it is no longer able to recall aspects of its evolution. Memory of initial conditions or previous training protocols will be lost. Thus many forms of memory are intrinsically tied to far-from-equilibrium behavior and to transient response to a perturbation. This general behavior arises in diverse contexts in condensed matter physics and materials: phase change memory, shape memory, echoes, memory effects in glasses, return-point memory in disordered magnets, as well as related contexts in computer science. Yet, as opposed to the situation in biology, there is currently no common categorization and description of the memory behavior that appears to be prevalent throughout condensed-matter systems. Here we focus on material memories. We will describe the basic phenomenology of a few of the known behaviors that can be understood as constituting a memory. We hope that this will be a guide towards developing the unifying conceptual underpinnings for a broad understanding of memory effects that appear in materials

    Photo-responsive polymeric structures based on spiropyran

    Get PDF
    Spiropyrans are one of the most popular classes of photochromic compounds that change their optical and structural properties in response to external inputs such as light, protons and metal ions, making them ideal molecules for the fabrication of multifunctional stimuli-responsive materials. Nowadays, the emphasis in polymeric materials incorporating spiropyran units, focuses on the effectiveness of their reversible response to external photonic stimuli. Photo-control of a range of key characteristics for flow systems, such as wettability, permeability, photo-modulation of flow by photo-actuation of valves, photonic control of uptake and release of guests using films and coatings, and colorimetric sensing of various species, are highlighted and discussed

    Photoelastic Stress Analysis

    Get PDF

    Nanofilament Scaffold For Tissue Regeneration

    Get PDF
    A scaffold for tissue regeneration is provided. In a preferred embodiment, the scaffold is implantable in a patient in need of nerve or other tissue regeneration and includes a structure which has a plurality of uniaxially oriented nanofibers made of at least one synthetic polymer. Preferably, at least 75% of the nanofibers are oriented within 20 degrees of the uniaxial orientation. The scaffold beneficially provides directional cues for cell and tissue regeneration, presumably by mimicking the natural strategy using filamentous structures during development and regeneration.Georgia Tech Research Corporatio
    corecore