234,926 research outputs found

    Soundness in Negotiations

    Get PDF
    Negotiations are a formalism for describing multiparty distributed cooperation. Alternatively, they can be seen as a model of concurrency with synchronized choice as communication primitive. Well-designed negotiations must be sound, meaning that, whatever its current state, the negotiation can still be completed. In a former paper, Esparza and Desel have shown that deciding soundness of a negotiation is PSPACE-complete, and in PTIME if the negotiation is deterministic. They have also provided an algorithm for an intermediate class of acyclic, non-deterministic negotiations, but left the complexity of the soundness problem open. In the first part of this paper we study two further analysis problems for sound acyclic deterministic negotiations, called the race and the omission problem, and give polynomial algorithms. We use these results to provide the first polynomial algorithm for some analysis problems of workflow nets with data previously studied by Trcka, van der Aalst, and Sidorova. In the second part we solve the open question of Esparza and Desel\u27s paper. We show that soundness of acyclic, weakly non-deterministic negotiations is in PTIME, and that checking soundness is already NP-complete for slightly more general classes

    Achieving New Upper Bounds for the Hypergraph Duality Problem through Logic

    Get PDF
    The hypergraph duality problem DUAL is defined as follows: given two simple hypergraphs G\mathcal{G} and H\mathcal{H}, decide whether H\mathcal{H} consists precisely of all minimal transversals of G\mathcal{G} (in which case we say that G\mathcal{G} is the dual of H\mathcal{H}). This problem is equivalent to deciding whether two given non-redundant monotone DNFs are dual. It is known that non-DUAL, the complementary problem to DUAL, is in GC(log⁡2n,PTIME)\mathrm{GC}(\log^2 n,\mathrm{PTIME}), where GC(f(n),C)\mathrm{GC}(f(n),\mathcal{C}) denotes the complexity class of all problems that after a nondeterministic guess of O(f(n))O(f(n)) bits can be decided (checked) within complexity class C\mathcal{C}. It was conjectured that non-DUAL is in GC(log⁡2n,LOGSPACE)\mathrm{GC}(\log^2 n,\mathrm{LOGSPACE}). In this paper we prove this conjecture and actually place the non-DUAL problem into the complexity class GC(log⁡2n,TC0)\mathrm{GC}(\log^2 n,\mathrm{TC}^0) which is a subclass of GC(log⁡2n,LOGSPACE)\mathrm{GC}(\log^2 n,\mathrm{LOGSPACE}). We here refer to the logtime-uniform version of TC0\mathrm{TC}^0, which corresponds to FO(COUNT)\mathrm{FO(COUNT)}, i.e., first order logic augmented by counting quantifiers. We achieve the latter bound in two steps. First, based on existing problem decomposition methods, we develop a new nondeterministic algorithm for non-DUAL that requires to guess O(log⁡2n)O(\log^2 n) bits. We then proceed by a logical analysis of this algorithm, allowing us to formulate its deterministic part in FO(COUNT)\mathrm{FO(COUNT)}. From this result, by the well known inclusion TC0⊆LOGSPACE\mathrm{TC}^0\subseteq\mathrm{LOGSPACE}, it follows that DUAL belongs also to DSPACE[log⁡2n]\mathrm{DSPACE}[\log^2 n]. Finally, by exploiting the principles on which the proposed nondeterministic algorithm is based, we devise a deterministic algorithm that, given two hypergraphs G\mathcal{G} and H\mathcal{H}, computes in quadratic logspace a transversal of G\mathcal{G} missing in H\mathcal{H}.Comment: Restructured the presentation in order to be the extended version of a paper that will shortly appear in SIAM Journal on Computin

    Deterministic regression model and visual basic code for optimal.

    Get PDF
    A new, non-statistical method is presented for analysis of the past history and current evolution of economic and financial processes. The method is based on the sliding model approach using linear differential or difference equations applied to discrete information in the form of known chronological data (time series) about the process. An algorithm is proposed that allows one to project the current evolution of the process onto some period of its future development. Computer code in visual basic is developed that has been validated in application to American stock index S&P 500, with predicted values within 5% of real data over long periods of the recent past history. The algorithm and the code can be applied to practical problems in finance and economy in time of its normal evolution without catastrophic events.Sliding deterministic regression models; Optimal forecasting in finance;

    Spectral analysis of the Gram matrix of mixture models

    Get PDF
    This text is devoted to the asymptotic study of some spectral properties of the Gram matrix WTWW^{\sf T} W built upon a collection w1,
,wn∈Rpw_1, \ldots, w_n\in \mathbb{R}^p of random vectors (the columns of WW), as both the number nn of observations and the dimension pp of the observations tend to infinity and are of similar order of magnitude. The random vectors w1,
,wnw_1, \ldots, w_n are independent observations, each of them belonging to one of kk classes C1,
,Ck\mathcal{C}_1,\ldots, \mathcal{C}_k. The observations of each class Ca\mathcal{C}_a (1≀a≀k1\le a\le k) are characterized by their distribution N(0,p−1Ca)\mathcal{N}(0, p^{-1}C_a), where C1,
,CkC_1, \ldots, C_k are some non negative definite p×pp\times p matrices. The cardinality nan_a of class Ca\mathcal{C}_a and the dimension pp of the observations are such that nan\frac{n_a}{n} (1≀a≀k1\le a\le k) and pn\frac{p}{n} stay bounded away from 00 and +∞+\infty. We provide deterministic equivalents to the empirical spectral distribution of WTWW^{\sf T}W and to the matrix entries of its resolvent (as well as of the resolvent of WWTWW^{\sf T}). These deterministic equivalents are defined thanks to the solutions of a fixed-point system. Besides, we prove that WTWW^{\sf T} W has asymptotically no eigenvalues outside the bulk of its spectrum, defined thanks to these deterministic equivalents. These results are directly used in our companion paper "Kernel spectral clustering of large dimensional data", which is devoted to the analysis of the spectral clustering algorithm in large dimensions. They also find applications in various other fields such as wireless communications where functionals of the aforementioned resolvents allow one to assess the communication performance across multi-user multi-antenna channels.Comment: 25 pages, 1 figure. The results of this paper are directly used in our companion paper "Kernel spectral clustering of large dimensional data", which is devoted to the analysis of the spectral clustering algorithm in large dimensions. To appear in ESAIM Probab. Statis

    Attribute Exploration of Discrete Temporal Transitions

    Full text link
    Discrete temporal transitions occur in a variety of domains, but this work is mainly motivated by applications in molecular biology: explaining and analyzing observed transcriptome and proteome time series by literature and database knowledge. The starting point of a formal concept analysis model is presented. The objects of a formal context are states of the interesting entities, and the attributes are the variable properties defining the current state (e.g. observed presence or absence of proteins). Temporal transitions assign a relation to the objects, defined by deterministic or non-deterministic transition rules between sets of pre- and postconditions. This relation can be generalized to its transitive closure, i.e. states are related if one results from the other by a transition sequence of arbitrary length. The focus of the work is the adaptation of the attribute exploration algorithm to such a relational context, so that questions concerning temporal dependencies can be asked during the exploration process and be answered from the computed stem base. Results are given for the abstract example of a game and a small gene regulatory network relevant to a biomedical question.Comment: Only the email address and reference have been replace

    A ϕ\phi-Competitive Algorithm for Scheduling Packets with Deadlines

    Full text link
    In the online packet scheduling problem with deadlines (PacketScheduling, for short), the goal is to schedule transmissions of packets that arrive over time in a network switch and need to be sent across a link. Each packet has a deadline, representing its urgency, and a non-negative weight, that represents its priority. Only one packet can be transmitted in any time slot, so, if the system is overloaded, some packets will inevitably miss their deadlines and be dropped. In this scenario, the natural objective is to compute a transmission schedule that maximizes the total weight of packets which are successfully transmitted. The problem is inherently online, with the scheduling decisions made without the knowledge of future packet arrivals. The central problem concerning PacketScheduling, that has been a subject of intensive study since 2001, is to determine the optimal competitive ratio of online algorithms, namely the worst-case ratio between the optimum total weight of a schedule (computed by an offline algorithm) and the weight of a schedule computed by a (deterministic) online algorithm. We solve this open problem by presenting a ϕ\phi-competitive online algorithm for PacketScheduling (where ϕ≈1.618\phi\approx 1.618 is the golden ratio), matching the previously established lower bound.Comment: Major revision of the analysis and some other parts of the paper. Another revision will follo

    Alternative Automata-based Approaches to Probabilistic Model Checking

    Get PDF
    In this thesis we focus on new methods for probabilistic model checking (PMC) with linear temporal logic (LTL). The standard approach translates an LTL formula into a deterministic ω-automaton with a double-exponential blow up. There are approaches for Markov chain analysis against LTL with exponential runtime, which motivates the search for non-deterministic automata with restricted forms of non-determinism that make them suitable for PMC. For MDPs, the approach via deterministic automata matches the double-exponential lower bound, but a practical application might benefit from approaches via non-deterministic automata. We first investigate good-for-games (GFG) automata. In GFG automata one can resolve the non-determinism for a finite prefix without knowing the infinite suffix and still obtain an accepting run for an accepted word. We explain that GFG automata are well-suited for MDP analysis on a theoretic level, but our experiments show that GFG automata cannot compete with deterministic automata. We have also researched another form of pseudo-determinism, namely unambiguity, where for every accepted word there is exactly one accepting run. We present a polynomial-time approach for PMC of Markov chains against specifications given by an unambiguous BĂŒchi automaton (UBA). Its two key elements are the identification whether the induced probability is positive, and if so, the identification of a state set inducing probability 1. Additionally, we examine the new symbolic Muller acceptance described in the Hanoi Omega Automata Format, which we call Emerson-Lei acceptance. It is a positive Boolean formula over unconditional fairness constraints. We present a construction of small deterministic automata using Emerson-Lei acceptance. Deciding, whether an MDP has a positive maximal probability to satisfy an Emerson-Lei acceptance, is NP-complete. This fact has triggered a DPLL-based algorithm for deciding positiveness
    • 

    corecore