154 research outputs found

    Recent Application in Biometrics

    Get PDF
    In the recent years, a number of recognition and authentication systems based on biometric measurements have been proposed. Algorithms and sensors have been developed to acquire and process many different biometric traits. Moreover, the biometric technology is being used in novel ways, with potential commercial and practical implications to our daily activities. The key objective of the book is to provide a collection of comprehensive references on some recent theoretical development as well as novel applications in biometrics. The topics covered in this book reflect well both aspects of development. They include biometric sample quality, privacy preserving and cancellable biometrics, contactless biometrics, novel and unconventional biometrics, and the technical challenges in implementing the technology in portable devices. The book consists of 15 chapters. It is divided into four sections, namely, biometric applications on mobile platforms, cancelable biometrics, biometric encryption, and other applications. The book was reviewed by editors Dr. Jucheng Yang and Dr. Norman Poh. We deeply appreciate the efforts of our guest editors: Dr. Girija Chetty, Dr. Loris Nanni, Dr. Jianjiang Feng, Dr. Dongsun Park and Dr. Sook Yoon, as well as a number of anonymous reviewers

    MS

    Get PDF
    thesisThe purpose of this study was to determine how often a false electrocardiogram (ECG) alarm occurred in an intensive care unit (ICU) or coronary care unit (CCU). Nine patients were monitored for 12-1/2 hours. The false alarms that occurred were documented and the cause was noted. Five patients were male with a mean age of 64 years, and four were female with a mean age of 57. Two patients were studied in the Respiratory (RICU), two in the Thoracic (TICU), and five in the CCU. The investigator studied whether a monitor could be developed that would be able to decrease the false alarm frequency by using a multiple ECG signal system, or a multiple physiologic signal system with the addition of an arterial pressure waveform. Fourteen false alarms occurred during the monitoring period with one true alarm. The frequency of false alarms was 4.2 in the RICU, 12.6 in the TICU, and 10.5 in the CCU; showing a much higher rate of false alarms per patient in the RICU. The frequency of false alarms could have been reduced by 60% with the addition of a multiple ECG signal system. Use of a multiple physiologic signal system however, would eliminate all of the false alarms and, therefore, would be a better system. No monitor that utilizes such a system has been developed, but it would be a great benefit to reduce the stress and noise level in the ICU/CCU

    Recent development of respiratory rate measurement technologies

    Get PDF
    Respiratory rate (RR) is an important physiological parameter whose abnormity has been regarded as an important indicator of serious illness. In order to make RR monitoring simple to do, reliable and accurate, many different methods have been proposed for such automatic monitoring. According to the theory of respiratory rate extraction, methods are categorized into three modalities: extracting RR from other physiological signals, RR measurement based on respiratory movements, and RR measurement based on airflow. The merits and limitations of each method are highlighted and discussed. In addition, current works are summarized to suggest key directions for the development of future RR monitoring methodologies

    Wired, wireless and wearable bioinstrumentation for high-precision recording of bioelectrical signals in bidirectional neural interfaces

    Get PDF
    It is widely accepted by the scientific community that bioelectrical signals, which can be used for the identification of neurophysiological biomarkers indicative of a diseased or pathological state, could direct patient treatment towards more effective therapeutic strategies. However, the design and realisation of an instrument that can precisely record weak bioelectrical signals in the presence of strong interference stemming from a noisy clinical environment is one of the most difficult challenges associated with the strategy of monitoring bioelectrical signals for diagnostic purposes. Moreover, since patients often have to cope with the problem of limited mobility being connected to bulky and mains-powered instruments, there is a growing demand for small-sized, high-performance and ambulatory biopotential acquisition systems in the Intensive Care Unit (ICU) and in High-dependency wards. Furthermore, electrical stimulation of specific target brain regions has been shown to alleviate symptoms of neurological disorders, such as Parkinson’s disease, essential tremor, dystonia, epilepsy etc. In recent years, the traditional practice of continuously stimulating the brain using static stimulation parameters has shifted to the use of disease biomarkers to determine the intensity and timing of stimulation. The main motivation behind closed-loop stimulation is minimization of treatment side effects by providing only the necessary stimulation required within a certain period of time, as determined from a guiding biomarker. Hence, it is clear that high-quality recording of local field potentials (LFPs) or electrocorticographic (ECoG) signals during deep brain stimulation (DBS) is necessary to investigate the instantaneous brain response to stimulation, minimize time delays for closed-loop neurostimulation and maximise the available neural data. To our knowledge, there are no commercial, small, battery-powered, wearable and wireless recording-only instruments that claim the capability of recording ECoG signals, which are of particular importance in closed-loop DBS and epilepsy DBS. In addition, existing recording systems lack the ability to provide artefact-free high-frequency (> 100 Hz) LFP recordings during DBS in real time primarily because of the contamination of the neural signals of interest by the stimulation artefacts. To address the problem of limited mobility often encountered by patients in the clinic and to provide a wide variety of high-precision sensor data to a closed-loop neurostimulation platform, a low-noise (8 nV/√Hz), eight-channel, battery-powered, wearable and wireless multi-instrument (55 × 80 mm2) was designed and developed. The performance of the realised instrument was assessed by conducting both ex vivo and in vivo experiments. The combination of desirable features and capabilities of this instrument, namely its small size (~one business card), its enhanced recording capabilities, its increased processing capabilities, its manufacturability (since it was designed using discrete off-the-shelf components), the wide bandwidth it offers (0.5 – 500 Hz) and the plurality of bioelectrical signals it can precisely record, render it a versatile tool to be utilized in a wide range of applications and environments. Moreover, in order to offer the capability of sensing and stimulating via the same electrode, novel real-time artefact suppression methods that could be used in bidirectional (recording and stimulation) system architectures are proposed and validated. More specifically, a novel, low-noise and versatile analog front-end (AFE), which uses a high-order (8th) analog Chebyshev notch filter to suppress the artefacts originating from the stimulation frequency, is presented. After defining the system requirements for concurrent LFP recording and DBS artefact suppression, the performance of the realised AFE is assessed by conducting both in vitro and in vivo experiments using unipolar and bipolar DBS (monophasic pulses, amplitude ranging from 3 to 6 V peak-to-peak, frequency 140 Hz and pulse width 100 ”s). Under both in vitro and in vivo experimental conditions, the proposed AFE provided real-time, low-noise and artefact-free LFP recordings (in the frequency range 0.5 – 250 Hz) during stimulation. Finally, a family of tunable hardware filter designs and a novel method for real-time artefact suppression that enables wide-bandwidth biosignal recordings during stimulation are also presented. This work paves the way for the development of miniaturized research tools for closed-loop neuromodulation that use a wide variety of bioelectrical signals as control signals.Open Acces

    3D spatio-temporal analysis for compressive sensing in magnetic resonance imaging of the murine cardiac cycle

    Get PDF
    This thesis consists of two major contributions, each of which has been prepared in a conference paper. These papers will be submitted for publication in the SPIE 2013 Medical Imaging Conference and the ASEE 2013 Annual Conference. The first paper explores a three-dimensional compressive sensing (CS) technique for reducing measurement time in MR imaging of the murine (mouse) cardiac cycle. By randomly undersampling a single 2D slice of a mouse heart at regular time intervals as it expands and contracts through the stages of a heartbeat, a CS reconstruction algorithm can be made to exploit transform sparsity in time as well as space. For the purposes of measuring the left ventricular volume in the mouse heart, this 3D approach offers significant advantages against classical 2D spatial compressive sensing. The second paper describes the modification and testing of a set of laboratory exercises for developing an undergraduate level understanding of Simulink. An existing partial set of lab exercises for Simulink was obtained and improved considerably in pedagogical utility, and then the completed set of pilot exercises was taught as a part of a communications course at the Missouri University of Science and Technology in order to gauge student responses and learning experiences. In this paper, the content of the laboratory exercises with corresponding educational approaches are discussed, along with student feedback and future improvements. --Abstract, page iv

    Advances in Emotion Recognition: Link to Depressive Disorder

    Get PDF
    Emotion recognition enables real-time analysis, tagging, and inference of cognitive affective states from human facial expression, speech and tone, body posture and physiological signal, as well as social text on social network platform. Recognition of emotion pattern based on explicit and implicit features extracted through wearable and other devices could be decoded through computational modeling. Meanwhile, emotion recognition and computation are critical to detection and diagnosis of potential patients of mood disorder. The chapter aims to summarize the main findings in the area of affective recognition and its applications in major depressive disorder (MDD), which have made rapid progress in the last decade

    Efficient Blind Source Separation Algorithms with Applications in Speech and Biomedical Signal Processing

    Get PDF
    Blind source separation/extraction (BSS/BSE) is a powerful signal processing method and has been applied extensively in many fields such as biomedical sciences and speech signal processing, to extract a set of unknown input sources from a set of observations. Different algorithms of BSS were proposed in the literature, that need more investigations, related to the extraction approach, computational complexity, convergence speed, type of domain (time or frequency), mixture properties, and extraction performances. This work presents a three new BSS/BSE algorithms based on computing new transformation matrices used to extract the unknown signals. Type of signals considered in this dissertation are speech, Gaussian, and ECG signals. The first algorithm, named as the BSE-parallel linear predictor filter (BSE-PLP), computes a transformation matrix from the the covariance matrix of the whitened data. Then, use the matrix as an input to linear predictor filters whose coefficients being the unknown sources. The algorithm has very fast convergence in two iterations. Simulation results, using speech, Gaussian, and ECG signals, show that the model is capable of extracting the unknown source signals and removing noise when the input signal to noise ratio is varied from -20 dB to 80 dB. The second algorithm, named as the BSE-idempotent transformation matrix (BSE-ITM), computes its transformation matrix in iterative form, with less computational complexity. The proposed method is tested using speech, Gaussian, and ECG signals. Simulation results show that the proposed algorithm significantly separate the source signals with better performance measures as compared with other approaches used in the dissertation. The third algorithm, named null space idempotent transformation matrix (NSITM) has been designed using the principle of null space of the ITM, to separate the unknown sources. Simulation results show that the method is successfully separating speech, Gaussian, and ECG signals from their mixture. The algorithm has been used also to estimate average FECG heart rate. Results indicated considerable improvement in estimating the peaks over other algorithms used in this work

    Photonic Biosensors: Detection, Analysis and Medical Diagnostics

    Get PDF
    The role of nanotechnologies in personalized medicine is rising remarkably in the last decade because of the ability of these new sensing systems to diagnose diseases from early stages and the availability of continuous screenings to characterize the efficiency of drugs and therapies for each single patient. Recent technological advancements are allowing the development of biosensors in low-cost and user-friendly platforms, thereby overcoming the last obstacle for these systems, represented by limiting costs and low yield, until now. In this context, photonic biosensors represent one of the main emerging sensing modalities because of their ability to combine high sensitivity and selectivity together with real-time operation, integrability, and compatibility with microfluidics and electric circuitry for the readout, which is fundamental for the realization of lab-on-chip systems. This book, “Photonic Biosensors: Detection, Analysis and Medical Diagnostics”, has been published thanks to the contributions of the authors and collects research articles, the content of which is expected to assume an important role in the outbreak of biosensors in the biomedical field, considering the variety of the topics that it covers, from the improvement of sensors’ performance to new, emerging applications and strategies for on-chip integrability, aiming at providing a general overview for readers on the current advancements in the biosensing field

    Biomedical Signal and Image Processing

    Get PDF
    Written for senior-level and first year graduate students in biomedical signal and image processing, this book describes fundamental signal and image processing techniques that are used to process biomedical information. The book also discusses application of these techniques in the processing of some of the main biomedical signals and images, such as EEG, ECG, MRI, and CT. New features of this edition include the technical updating of each chapter along with the addition of many more examples, the majority of which are MATLAB based

    Study, definition and analysis of pilot/system performance measurements for planetary entry experiments

    Get PDF
    Definition analysis for experimental prediction of pilot performance during planetary entr
    • 

    corecore