34 research outputs found

    A non-coherent multi-user large scale SIMO system relaying on M-ary DPSK

    Get PDF
    The proceeding at: 2015, IEEE International Conference on Communications (ICC) took place 8-12 June in London (UK)A non-coherent detection assisted Differential Phase Shift Keying aided large-scale MIMO system is designed in a wireless uplink where multiple single-antenna users are transmitting to the base station's receiver equipped with a very large number of receive antennas. We show that the signal to interference plus noise ratio (SINR) scales with the number of receive antennas, which confirms the same scaling law found in coherent systems. We propose a range of constellation designs that allow us to separate the users' signals at the receiver by relying only on the knowledge of the average received power per user. We analyse the error probability and provide insights into the beneficial selection of the constellation parameters. Finally, we provide some numerical results showing that our proposals require a lower number of receive antennas to achieve a given error probability than other non-coherent benchmark schemes available in the literature, while they are not far from an equivalent coherent system relying on realistic channel estimation settings.This work was supported by projects CSD2008-00010, TEC2011-29006-C03-03 and by a mobility grant of Spanish Ministry of Education. The financial support of the UK Government’s Engineering & Physical Sciences Research Council (EPSRC) as well as that of the Research Councils UK (RCUK) and of the European Research Council’s Senior Research Fellow Grant is also gratefully acknowledged

    Differential Modulation for Short Packet Transmission in URLLC

    Full text link
    One key feature of ultra-reliable low-latency communications (URLLC) in 5G is to support short packet transmission (SPT). However, the pilot overhead in SPT for channel estimation is relatively high, especially in high Doppler environments. In this paper, we advocate the adoption of differential modulation to support ultra-low latency services, which can ease the channel estimation burden and reduce the power and bandwidth overhead incurred in traditional coherent modulation schemes. Specifically, we consider a multi-connectivity (MC) scheme employing differential modulation to enable URLLC services. The popular selection combining and maximal ratio combining schemes are respectively applied to explore the diversity gain in the MC scheme. A first-order autoregressive model is further utilized to characterize the time-varying nature of the channel. Theoretically, the maximum achievable rate and minimum achievable block error rate under ergodic fading channels with PSK inputs and perfect CSI are first derived by using the non-asymptotic information-theoretic bounds. The performance of SPT with differential modulation and MC schemes is then analysed by characterizing the effect of differential modulation and time-varying channels as a reduction in the effective SNR. Simulation results show that differential modulation does offer a significant advantage over the pilot-assisted coherent scheme for SPT, especially in high Doppler environments.Comment: 15 pages, 9 figure

    Effect of Spatial Correlation on the Performance of Non-coherent Massive MIMO based on DMPSK

    Get PDF
    Proceedings of: IEEE Global Communications Conference (GLOBECOM), 9-11 December 2021, Madrid.A rigorous analysis of the effect of spatial corre-lation for non-coherent (NC) massive multiple-input-multiple-output (MIMO) in Rician channels is important to determine its applicability in these scenarios. We conduct such analysis for a single base station (BS) and a more general case of several BSs, all of them showing correlation among their own antennas but with uncorrelated channels with respect to each other. We first perform an analysis of the distribution of the received symbols, then propose some approximations to give a closed form expression of the symbol error probability (SER) and the signal-to-interference-and-noise-ratio (SINR) as performance measures. Finally, we extract some conclusions from this analysis to show how the combined use of several BSs and larger Rician components can be beneficial in this scenario. Some numerical results are added to confirm the accuracy of the analysis.This work has received funding from the European Union Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie ETN TeamUp5G, grant agreement No. 813391, and the Spanish National Project TERESA-ADA (TEC2017-90093-C3-2-R) (MINECO/AEI/FEDER, UE)

    Multiuser non coherent massive MIMO schemes based on DPSK for future communication systems

    Get PDF
    The explosive usage of rich multimedia content in wireless devices has overloaded the communication networks. Moreover, the fifth generation (5G) of wireless communications involves new requirements in the radio access network (RAN) which require higher network capacities and new capabilities such as ultra-reliable and low-latency communication (URLLC), vehicular communications or augmented reality. All this has encouraged a remarkable spectrum crisis in the RF bands. A need for searching alternative techniques with more spectral efficiency to accommodate the needs of future emerging wireless communications is emerging. In this context, massive MIMO (m-MIMO) systems have been proposed as a promising solution for providing a substantial increase in the network capacity, becoming one of the key enabling technologies for 5G and beyond. m-MIMO provides high spectral- and energy-efficiency thanks to the deployment of a large number of antennas at the BS. However, we have to take into account that the current communication technologies are based on coherent transmission techniques so far, which require the transmission of a huge amount of signaling. This drawback is escalating with the excessive available number of antennas in m-MIMO. Therefore, the differential encoding and non coherent (NC) detection are an alternative solution to circumvent the drawbacks of m-MIMO in coherent systems. This Ph.D. Thesis is focused on signal processing techniques for NC detection in conjunction with m-MIMO, proposing new constellation designs and NC detection algorithms, where the information is transmitted in the signal differential phase. First, we design new constellation schemes for an uplink multiuser NC m-MIMO system in Rayleigh fading channels. These designs allow us to separate the users' signals at the receiver thanks to a one-to-one correspondence between the constellation for each user and the received joint constellation. Two approaches are considered in terms of BER: each user achieves a different performance and, on the other hand, the same performance is provided for all users. We analyze the number of antennas needed for those designs and compare to the required number by other designs in the literature. It is shown that our designs based on DPSK require a lower number of antennas than that required by their counterpart schemes based on energy. In addition, we compare the performance to their coherent counterpart systems, resulting NC-m-MIMO based on DPSK capable of outperforming the coherent systems with the suitable designs. Second, in order to reduce the number of antennas required for a target performance we propose a multi-user bit interleaved coded modulation - iterative decoding (BICM-ID) scheme as channel coding for a NC-m-MIMO system based on DPSK. We propose a novel NC approach for calculating EXIT curves based on the number of antennas. Then using the EXIT chart we find the best channel coding scheme for our NC-m-MIMO proposal. We show that the number of users served by the BS can be increased with a 70% reduction in the number of antennas with respect to the case without channel coding. In particular, we show that with 100 antennas for error protection equal design for all users and a coding rate of 1/2 we achieve the minimum probability of error. Third, we consider that current scenarios such as backhaul wireless systems, rural or suburban environments, and even new device-to-device (D2D) communications or the communications in higher frequencies (millimeter and the emerging ones in terahertz frequencies) can have a predominant line-of-sight (LOS) component, modeled by Rician fading. For all these new possible scenarios in 5G, we analyze the behavior of the NC m-MIMO systems when we have a Rician fading. We present a new constellation design to overcome the problem of the LOS channel component, as well as an associated detection algorithm to separate each user in reception taking into account the characterization of the constellation. In addition, for contemplating a more realistic scenario, we propose grouping users which experience a Rayleigh fading with those with Rician fading, analyzing the SINR and the performance of such combination in a multi-user NC m-MIMO system based on M-DPSK. The adequate user grouping allows unifying the constellation for both groups of users and the detection algorithm, reducing the complexity of the receiver. Also, the number of users that may be multiplexed may be further increased thanks to the improved performance. In the fourth part of this Thesis, we analyse the performance of multi-user NC m- MIMO based on DPSK in real environments and practical channels defined for the current standards such as LTE, the future technologies such as 5G and even for communications in the terahertz band. For this purpose, we use a metric to model the time-varying characteristics of the practical channels. We employ again the EXIT charts tool for analyzing and designing iteratively decoded systems. This analysis allows us to obtain an estimate of the degradation of the system's performance imposed by realistic channels. Hence, we show that our proposed system is robust to temporal variations, thus it is more recommendable the employment of NC-m-MIMO-DPSK in the future communication standards such as 5G. In order to reduce he number of hardware resources required in terms of RF chains, facilitating its implementation in a real system, we propose incorporating differential spatial modulation (DSM). We present and analyze a novel multiuser scheme for NC-m-MIMO combined with DSM with which we can see that the number of antennas is not a affected by the incorporation of DSM, even we have an improvement on the performance with respect to the coherent case. Finally, we study the viability of multiplexing users by constellation schemes against classical multiplexing techniques such as time division multiple access (TDMA). In order to fully characterize the system performance we analyze the block error rate (BLER) and the throughput of a NC-m-MIMO system. The results show a significant advantage regarding the number of antennas for multiplexing in the constellation against TDMA. However, in some cases, the demodulation of multiple users in constellation could require an excessively large number of antennas compared to TDMA. Therefore, it is necessary to properly manage the tradeoff between throughout and the number of antennas, to reach an optimal operational point, as shown in this Thesis.El inmenso uso de contenido multimedia en los dispositivos inalámbricos ha sobrecargado las redes de comunicaciones. Además, la quinta generación (5G) de sistemas de comunicaciones demanda nuevos requisitos para la red de acceso radio, la cual requiere ofrecer capacidades de red mayores y nuevas funcionalidades como comunicaciones ultra fiables y con muy poca letancia (URLLC), comunicaciones vehiculares o aplicaciones como la realidad aumentada. Todo esto ha propiciado una crisis notable en el espectro electromagnético, lo que ha llevado a una necesidad por buscar técnicas alternativas con más eficiencia espectral para acomodar todos los requisitos de las tecnologías de comunicaciones emergentes y futuras. En este contexto, los sistemas multi antena masivos, conocidos como massive MIMO, m-MIMO, han sido propuestos como una solución prometedora que proporciona un incremento substancial de la capacidad de red, convirtiéndose en una de las tecnologías claves para el 5G. Los sistemas m-MIMO elevan enormemente el número de antenas en la estación base, lo que les permite ofrecer alta eficiencia espectral y energética. No obstante, tenemos que tener en cuenta que las actuales tecnologías de comunicaciones emplean técnicas coherentes, las cuales requieren de información del estado del canal y por ello la transmisión de una enorme cantidad de información de señalización. Este inconveniente se ve agravado en el caso del m-MIMO debido al enorme número de antenas. Por ello, la codificación diferencial y la detección no coherente (NC) son una solución alternativa para solventar el problema de m-MIMO en los sistemas coherentes. Esta Tesis se centra en las técnicas de procesado de señal para detección NC junto con m-MIMO, proponiendo nuevos esquemas de constelación y algoritmos de detección NC, donde la información sea transmitida en la diferencia de fase de la señal. Primero, diseñamos nuevas constelaciones para un sistema multi usuario NC en m- MIMO en enlace ascendente (uplink) en canales con desvanecimiento tipo Rayleigh. Estos diseños nos permiten separar las señales de los usuarios en el receptor gracias a la correspondencia unívoca entre la constelación de cada usuario individual y la constelación conjunta recibida en la estación base. Hemos considerado dos enfoques para el diseño en términos de probabilidad de error: cada usuario consigue un rendimiento distinto, mientras que por otro lado, todos los usuarios son capaces de recibir las mismas prestaciones de probabilidad de error. Analizamos el número de antenas necesario para estos diseños y comparamos con el número requerido por otros diseños propuestos en la literatura. Nuestro diseño basado en DPSK requiere un número menor de antenas comparado con los sistemas basados en detección de energía. También comparamos con su homólogo coherente, resultando que NC-m-MIMO basado en DPSK es capaz de superar a los sistemas coherentes con los diseños adecuados. En segundo lugar, para reducir el número de antenas requerido para un rendimiento dado, proponemos incluir un esquema de codificación de canal. Hemos optado por un esquema de modulación codificado por bit entrelazado y decodificación iterativa (BICMID). Hemos empleado la herramienta EXIT chart para el diseño de la codificación de canal, proponiendo un nuevo enfoque para calcular las curvas EXIT de forma NC y basadas en el número de antenas. Los resultados muestran que el número de usuarios servidos por la estación base puede ser incrementado reduciendo un 70% el número de antenas con respecto al caso sin codificación de canal. En particular, para un array de 100 antenas y un diseño que ofrezca iguales prestaciones a todos los usuarios, con un código de tasa 1=2, podemos conseguir la mínima probabilidad de error. En tercer lugar, consideramos escenarios donde el canal tenga una componente predominante de visión directa (LOS) con la estación base modelada mediante un desvanecimiento tipo Rician. Por ejemplo, sistemas inalámbricos de backhaul, entornos rurales o sub urbanos, comunicaciones entre dispositivos (D2D), también cuando nos movemos hacia frecuencias superiores como son en la banda de milimétricas o más recientemente, la banda de terahercios para buscar mayores anchos de banda. Todos estos escenarios están contemplados en el futuro 5G. Los diseños presentados para canales Rayleigh ya no son válidos debido a la componente LOS del canal, por ello presentamos un nuevo diseño de constelación que resuelve el problema de la componente LOS, así como una guía para diseñar nuevas constelaciones. También proponemos un algoritmo asociado al diseñno de la constelación para poder separar a los usuarios en recepción. Además, para contemplar un escenario más realista donde podamos encontrar tanto desvanecimiento Rayleigh como Rice, proponemos agrupar usuarios de ambos grupos, analizando su rendimiento y relación señal a interferencia en la combinación. El adecuado agrupamiento permite unificar el diseño de la constelación para ambos desvanecimientos y por tanto reducir la complejidad en el receptor. También, el número de usuarios multiplicados en la constelación podría ser incrementado, gracias a la mejora en el rendimiento. El cuarto módulo de esta tesis es dedicado a analizar el rendimiento de los diseños propuestos en presencia de canales reales, donde disponemos de variabilidad temporal y en frecuencia. Proponemos usar una métrica que modela las características de la variabilidad temporal y, usando de nuevo la herramienta EXIT, analizamos los sistemas decodificados iterativamente considerando ahora los parámetros prácticos del canal. Este análisis nos permite obtener una estimación de la degradación que sufre el rendimiento del sistema impuesto por canales reales. Los resultados muestran que los sistemas NC-m-MIMO basados en DPSK son muy robustos a la variabilidad temporal por lo que son recomendables para los nuevos escenarios propuestos por el 5G, donde el canal cambia rápidamente. Otra consideración para introducir los sistemas NC con m-MIMO es la problemática de necesitar muchas cadenas de radio frecuencia que llevarían a tamaños de dispositivos enormes. Para reducir este número se propone la modulación espacial. En esta Tesis, estudiamos su uso con los sistemas NC, proponiendo una solución de modulación espacial diferencial para esquemas con múltiples usuarios combinado con NC-m-MIMO. Finalmente, estudiamos la viabilidad de multiplexar usuarios en la constelación frente a usar técnicas clásicas de multiplexación como TDMA. Para caracterizar completamente el rendimiento del sistema, analizamos la tasa de error de bloque (BLER) y el throughput de un sistema NC-m-MIMO. Los resultados muestran una ventaja significativa en cuanto al número de antennas para multiplexar usuarios en la constelación frente al requerido por TDMA. No obstante, en algunos casos, la demodulación de múltiples usuarios en la constelación podría requerir un número de antennas excesivamente grande comparado con la multiplexación en el tiempo. Por ello, es necesario gestionar adecuadamente un balance entre el throughput y el número de antenas para alcanzar un punto operacional óptimo, como se muestra en esta Tesis.Programa Oficial de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: Ana Isabel Pérez Neira.- Secretario: Máximo Morales Céspedes.- Vocal: María del Carmen Aguayo Torre

    Performance analysis of diversity techniques in wireless communication systems: Cooperative systems with CCI and MIMO-OFDM systems

    Get PDF
    This Dissertation analyzes the performance of ecient digital commu- nication systems, the performance analysis includes the bit error rate (BER) of dier- ent binary and M-ary modulation schemes, and the average channel capacity (ACC) under dierent adaptive transmission protocols, namely, the simultaneous power and rate adaptation protocol (OPRA), the optimal rate with xed power protocol (ORA), the channel inversion with xed rate protocol (CIFR), and the truncated channel in- version with xed transmit power protocol (CTIFR). In this dissertation, BER and ACC performance of interference-limited dual-hop decode-and-forward (DF) relay- ing cooperative systems with co-channel interference (CCI) at both the relay and destination nodes is analyzed in small-scale multipath Nakagami-m fading channels with arbitrary (integer as well as non-integer) values of m. This channel condition is assumed for both the desired signal as well as co-channel interfering signals. In addition, the practical case of unequal average fading powers between the two hops is assumed in the analysis. The analysis assumes an arbitrary number of indepen- dent and non-identically distributed (i.n.i.d.) interfering signals at both relay (R) and destination (D) nodes. Also, the work extended to the case when the receiver employs the maximum ratio combining (MRC) and the equal gain combining (EGC) schemes to exploit the diversity gain

    Channel Estimation and Symbol Detection In Massive MIMO Systems Using Expectation Propagation

    Get PDF
    The advantages envisioned from using large antenna arrays have made massive multiple- input multiple-output systems (also known as massive MIMO) a promising technology for future wireless standards. Despite the advantages that massive MIMO systems provide, increasing the number of antennas introduces new technical challenges that need to be resolved. In particular, symbol detection is one of the key challenges in massive MIMO. Obtaining accurate channel state information (CSI) for the extremely large number of chan- nels involved is a difficult task and consumes significant resources. Therefore for Massive MIMO systems coherent detectors must be able to cope with highly imperfect CSI. More importantly, non-coherent schemes which do not rely on CSI for symbol detection become very attractive. Expectation propagation (EP) has been recently proposed as a low complexity algo- rithm for symbol detection in massive MIMO systems , where its performance is evaluated on the premise that perfect channel state information (CSI) is available at the receiver. However, in practical systems, exact CSI is not available due to a variety of reasons in- cluding channel estimation errors, quantization errors and aging. In this work we study the performance of EP in the presence of imperfect CSI due to channel estimation er- rors and show that in this case the EP detector experiences significant performance loss. Moreover, the EP detector shows a higher sensitivity to channel estimation errors in the high signal-to-noise ratio (SNR) regions where the rate of its performance improvement decreases. We investigate this behavior of the EP detector and propose a Modified EP detector for colored noise which utilizes the correlation matrix of the channel estimation error. Simulation results verify that the modified algorithm is robust against imperfect CSI and its performance is significantly improved over the EP algorithm, particularly in the higher SNR regions, and that for the modified detector, the slope of the symbol error rate (SER) vs. SNR plots are similar to the case of perfect CSI. Next, an algorithm based on expectation propagation is proposed for noncoherent symbol detection in large-scale SIMO systems. It is verified through simulation that in terms of SER, the proposed detector outperforms the pilotbased coherent MMSE detector for blocks as small as two symbols. This makes the proposed detector suitable for fast fading channels with very short coherence times. In addition, the SER performance of this detec- tor converges to that of the optimum ML receiver when the size of the blocks increases. Finally it is shown that for Rician fading channels, knowledge of the fading parameters is not required for achieving the SER gains. A channel estimation method was recently proposed for multi-cell massive MIMO sys- tems based on the eigenvalue decomposition of the correlation matrix of the received vectors (EVD-based). This algorithm, however, is sensitive to the size of the antenna array as well as the number of samples used in the evaluation of the correlation matrix. As the final work in this dissertation, we present a noncoherent channel estimation and symbol de- tection scheme for multi-cell massive MIMO systems based on expectation propagation. The proposed algorithm is initialized with the channel estimation result from the EVD- based method. Simulation results show that after a few iterations, the EP-based algorithm significantly outperforms the EVD-based method in both channel estimation and symbol error rate. Moreover, the EP-based algorithm is not sensitive to antenna array size or the inaccuracies of sample correlation matrix

    Differential data-aided channel estimation for up-link massive SIMO-OFDM

    Get PDF
    Pilot symbol assisted modulation (PSAM) is widely used to obtain the channel state information (CSI) needed for coherent demodulation. It allows the density of pilot symbols to be dynamically chosen depending on the channel conditions. However, the insertion of pilots reduces the spectral efficiency, more severely when the channel is highly time-variant and/or frequency-selective. In these cases a significant amount of pilots is required to properly track the channel variations in both time and frequency dimensions. Alternatively, non-coherent demodulation does not require any CSI for the demodulation independently of the channel conditions. For the particular case of up-link (UL) based on massive single input -multiple output (SIMO) combined with orthogonal frequency division multiplexing (OFDM), we propose to replace the traditional reference signals of PSAM by a new differentially-encoded data stream that can be non-coherently detected. The latter can be demodulated without the knowledge of the CSI and subsequently used for the channel estimation. We denote our proposal as hybrid demodulation scheme (HDS) because it exploits both the benefits of a coherent demodulation scheme (CDS) and a non-coherent demodulation scheme (NCDS) to increase the spectral efficiency. The mean squared error (MSE) of the channel estimation, bit error rate (BER), achieved throughput and complexity are analyzed to highlight the benefits of this differential data-aided channel estimation as compared to other approaches. We show that the channel estimation is almost as good as PSAM, while the BER performance and throughput are improved for different channel conditions with a very small complexity increase.This work has received funding from the European Union (EU) Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie ETN TeamUp5G, grant agreement No. 813391, and from the Spanish National Project TERESA-ADA (TEC2017-90093-C3-2-R) (MINECO/AEI/FEDER, UE)

    Non-coherent MIMO-OFDM uplink empowered by the spatial diversity in reflecting surfaces

    Get PDF
    Proceedings of: 2022 IEEE Wireless Communications and Networking Conference (WCNC), 10-13 April 2022, Austin, USA.Reflecting Surfaces (RSs) are being lately envisioned as an energy efficient solution capable of enhancing the signal coverage in cases where obstacles block the direct communication from Base Stations (BSs), especially at high frequency bands due to attenuation loss increase. In the current literature, wireless communications via RSs are exclusively based on traditional coherent demodulation, which necessitates the estimation of accurate Channel State Information (CSI). However, this requirement results in an increased overhead, especially in time-varying channels, which reduces the resources that can be used for data communication. In this paper, we consider the uplink between a single-antenna user and a multi-antenna BS and present a novel RS-empowered Orthogonal Frequency Division Multiplexing (OFDM) communication system based on the differential phase shift keying, which is suitable for high noise and/or mobility scenarios. As a benchmark, analytical expressions for the Signal-to-Interference and Noise Ratio (SINR) of the proposed system are presented. Our extensive simulation results verify the accuracy of the presented analysis and showcase the performance and superiority of the proposed system over coherent demodulation.This work has been funded by the Spanish National project IRENE-EARTH (PID2020-115323RB-C33 / AEI / 10.13039/501100011033) and European EU H2020 RISE-6G

    Non-Coherent Massive MIMO-OFDM Down-Link Based on Differential Modulation

    Get PDF
    Orthogonal frequency division multiplexing (OFDM) and multiple-input multiple-output (MIMO) are wireless radio technologies adopted by the new Fifth Generation (5G) of mobile communications. A very large number of antennas (massive MIMO) is used to perform the beam-forming of the transmitted signal, either to reduce the multi-user interference (MUI), when spatially multiplexing several users, or to compensate the path-loss when higher frequencies than microwave are used, such as the millimeter-waves (mm-Waves). Usually, a coherent demodulation scheme (CDS) is used in order to exploit MIMO-OFDM, where the channel estimation and the pre/post-equalization processes are complex and time consuming operations, which require a considerable pilot overhead and also increase the latency of the system. As an alternative, non-coherent techniques based on a differential modulation scheme have been proposed for the up-link (UL). However, it is not straightforward to extend these proposals to the down-link (DL) due to the (usually) reduced number of antennas at the receiver side. In this paper we overcome this problem, and assuming that each user equipment (UE) is only equipped with one single antenna, we propose the combination of beam-forming with a differential modulation scheme for the DL, enhanced by the frequency diversity. The new transmission and reception schemes are described, and the signal-to-interference-plus-noise ratio (SINR) and the complexity are analysed. The numerical results verify the accuracy of the analysis and show that our proposal outperforms the existing CDS with a significant lower complexity.This work was supported by project TERESA-ADA (TEC2017-90093-C3-2-R) (MINECO/AEI/FEDER, UE)
    corecore