438 research outputs found

    The bi-objective travelling salesman problem with profits and its connection to computer networks.

    Get PDF
    This is an interdisciplinary work in Computer Science and Operational Research. As it is well known, these two very important research fields are strictly connected. Among other aspects, one of the main areas where this interplay is strongly evident is Networking. As far as most recent decades have seen a constant growing of every kind of network computer connections, the need for advanced algorithms that help in optimizing the network performances became extremely relevant. Classical Optimization-based approaches have been deeply studied and applied since long time. However, the technology evolution asks for more flexible and advanced algorithmic approaches to model increasingly complex network configurations. In this thesis we study an extension of the well known Traveling Salesman Problem (TSP): the Traveling Salesman Problem with Profits (TSPP). In this generalization, a profit is associated with each vertex and it is not necessary to visit all vertices. The goal is to determine a route through a subset of nodes that simultaneously minimizes the travel cost and maximizes the collected profit. The TSPP models the problem of sending a piece of information through a network where, in addition to the sending costs, it is also important to consider what “profit” this information can get during its routing. Because of its formulation, the right way to tackled the TSPP is by Multiobjective Optimization algorithms. Within this context, the aim of this work is to study new ways to solve the problem in both the exact and the approximated settings, giving all feasible instruments that can help to solve it, and to provide experimental insights into feasible networking instances

    Decision Support for Planning of Multimodal Transportation with Multiple Objectives

    Get PDF

    Shared Mobility Optimization in Large Scale Transportation Networks: Methodology and Applications

    Get PDF
    abstract: Optimization of on-demand transportation systems and ride-sharing services involves solving a class of complex vehicle routing problems with pickup and delivery with time windows (VRPPDTW). Previous research has made a number of important contributions to the challenging pickup and delivery problem along different formulation or solution approaches. However, there are a number of modeling and algorithmic challenges for a large-scale deployment of a vehicle routing and scheduling algorithm, especially for regional networks with various road capacity and traffic delay constraints on freeway bottlenecks and signal timing on urban streets. The main thrust of this research is constructing hyper-networks to implicitly impose complicated constraints of a vehicle routing problem (VRP) into the model within the network construction. This research introduces a new methodology based on hyper-networks to solve the very important vehicle routing problem for the case of generic ride-sharing problem. Then, the idea of hyper-networks is applied for (1) solving the pickup and delivery problem with synchronized transfers, (2) computing resource hyper-prisms for sustainable transportation planning in the field of time-geography, and (3) providing an integrated framework that fully captures the interactions between supply and demand dimensions of travel to model the implications of advanced technologies and mobility services on traveler behavior.Dissertation/ThesisDoctoral Dissertation Civil, Environmental and Sustainable Engineering 201

    Optimization of vehicle routing and scheduling with travel time variability - application in winter road maintenance

    Get PDF
    This study developed a mathematical model for optimizing vehicle routing and scheduling, which can be used to collect travel time information, and also to perform winter road maintenance operations (e.g., salting, plowing). The objective of this research was to minimize the total vehicle travel time to complete a given set of service tasks, subject to resource constraints (e.g., truck capacity, fleet size) and operational constraints (e.g., service time windows, service time limit). The nature of the problem is to design vehicle routes and schedules to perform the required service on predetermined road segments, which can be interpreted as an arc routing problem (ARP). By using a network transformation technique, an ARP can be transformed into a well-studied node routing problem (NRP). A set-partitioning (SP) approach was introduced to formulate the problem into an integer programming problem (I PP). To solve this problem, firstly, a number of feasible routes were generated, subject to resources and operational constraints. A genetic algorithm based heuristic was developed to improve the efficiency of generating feasible routes. Secondly, the corresponding travel time of each route was computed. Finally, the feasible routes were entered into the linear programming solver (CPL EX) to obtain final optimized results. The impact of travel time variability on vehicle routing and scheduling for transportation planning was also considered in this study. Usually in the concern of vehicle and pedestrian\u27s safety, federal, state governments and local agencies are more leaning towards using a conservative approach with constant travel time for the planning of winter roadway maintenance than an aggressive approach, which means that they would rather have a redundancy of plow trucks than a shortage. The proposed model and solution algorithm were validated with an empirical case study of 41 snow sections in the northwest area of New Jersey. Comprehensive analysis based on a deterministic travel time setting and a time-dependent travel time setting were both performed. The results show that a model that includes time dependent travel time produces better results than travel time being underestimated and being overestimated in transportation planning. In addition, a scenario-based analysis suggests that the current NJDOT operation based on given snow sector design, service routes and fleet size can be improved by the proposed model that considers time dependent travel time and the geometry of the road network to optimize vehicle routing and scheduling. In general, the benefit of better routing and scheduling design for snow plowing could be reflected in smaller minimum required fleet size and shorter total vehicle travel time. The depot location and number of service routes also have an impact on the final optimized results. This suggests that managers should consider the depot location, vehicle fleet sizing and the routing design problem simultaneously at the planning stage to minimize the total cost for snow plowing operations

    Attention, Learn to Solve Routing Problems!

    Get PDF
    The recently presented idea to learn heuristics for combinatorial optimization problems is promising as it can save costly development. However, to push this idea towards practical implementation, we need better models and better ways of training. We contribute in both directions: we propose a model based on attention layers with benefits over the Pointer Network and we show how to train this model using REINFORCE with a simple baseline based on a deterministic greedy rollout, which we find is more efficient than using a value function. We significantly improve over recent learned heuristics for the Travelling Salesman Problem (TSP), getting close to optimal results for problems up to 100 nodes. With the same hyperparameters, we learn strong heuristics for two variants of the Vehicle Routing Problem (VRP), the Orienteering Problem (OP) and (a stochastic variant of) the Prize Collecting TSP (PCTSP), outperforming a wide range of baselines and getting results close to highly optimized and specialized algorithms.Comment: Accepted at ICLR 2019. 25 pages, 7 figure

    Ship Routing with Pickup and Delivery for a Maritime Oil Transportation System: MIP Modeland Heuristics

    Get PDF
    This paper examines a ship routing problem with pickup and delivery and time windows for maritime oil transportation, motivated by the production and logistics activities of an oil company operating in the Brazilian coast. The transportation costs from offshore platforms to coastal terminals are an important issue in the search for operational excellence in the oil industry, involving operations that demand agile and effective decision support systems. This paper presents an optimization approach to address this problem, based on a mixed integer programming (MIP) model and a novel and exploratory application of two tailor-made MIP heuristics, based on relax-and-fix and time decomposition procedures. The model minimizes fuel costs of a heterogeneous fleet of oil tankers and costs related to freighting contracts. The model also considers company-specific constraints for offshore oil transportation. Computational experiments based on the mathematical models and the related MIP heuristics are presented for a set of real data provided by the company, which confirm the potential of optimization-based methods to find good solutions for problems of moderate sizes
    corecore