545 research outputs found

    A Chaotic IP Watermarking in Physical Layout Level Based on FPGA

    Get PDF
    A new chaotic map based IP (Intellectual Property) watermarking scheme at physical design level is presented. An encrypted watermark is embedded into the physical layout of a circuit by configuring LUT (Lookup Table) as specific functions when it is placed and routed onto the FPGA (Field-Programmable Gate Array). The main contribution is the use of multiple chaotic maps in the processes of watermark design and embedding, which efficiently improves the security of watermark. A hashed chaotic sequence is used to scramble the watermark. Secondly, two pseudo-random sequences are generated by using chaotic maps. One is used to determine unused LUT locations, and the other divides the watermark into groups. The watermark identifies original owner and is difficult to detect. This scheme was tested on a Xilinx Virtex XCV600-6bg432 FPGA. The experimental results show that our method has low impact on functionality, short path delay and high robustness in comparison with other methods

    Steganography: a class of secure and robust algorithms

    Full text link
    This research work presents a new class of non-blind information hiding algorithms that are stego-secure and robust. They are based on some finite domains iterations having the Devaney's topological chaos property. Thanks to a complete formalization of the approach we prove security against watermark-only attacks of a large class of steganographic algorithms. Finally a complete study of robustness is given in frequency DWT and DCT domains.Comment: Published in The Computer Journal special issue about steganograph

    Improving random number generators by chaotic iterations. Application in data hiding

    Full text link
    In this paper, a new pseudo-random number generator (PRNG) based on chaotic iterations is proposed. This method also combines the digits of two XORshifts PRNGs. The statistical properties of this new generator are improved: the generated sequences can pass all the DieHARD statistical test suite. In addition, this generator behaves chaotically, as defined by Devaney. This makes our generator suitable for cryptographic applications. An illustration in the field of data hiding is presented and the robustness of the obtained data hiding algorithm against attacks is evaluated.Comment: 6 pages, 8 figures, In ICCASM 2010, Int. Conf. on Computer Application and System Modeling, Taiyuan, China, pages ***--***, October 201

    Steganography: a Class of Algorithms having Secure Properties

    Full text link
    Chaos-based approaches are frequently proposed in information hiding, but without obvious justification. Indeed, the reason why chaos is useful to tackle with discretion, robustness, or security, is rarely elucidated. This research work presents a new class of non-blind information hidingalgorithms based on some finite domains iterations that are Devaney's topologically chaotic. The approach is entirely formalized and reasons to take place into the mathematical theory of chaos are explained. Finally, stego-security and chaos security are consequently proven for a large class of algorithms.Comment: 4 pages, published in Seventh International Conference on Intelligent Information Hiding and Multimedia Signal Processing, IIH-MSP 2011, Dalian, China, October 14-16, 201
    corecore