315 research outputs found

    Harmonic and Refined Harmonic Shift-Invert Residual Arnoldi and Jacobi--Davidson Methods for Interior Eigenvalue Problems

    Full text link
    This paper concerns the harmonic shift-invert residual Arnoldi (HSIRA) and Jacobi--Davidson (HJD) methods as well as their refined variants RHSIRA and RHJD for the interior eigenvalue problem. Each method needs to solve an inner linear system to expand the subspace successively. When the linear systems are solved only approximately, we are led to the inexact methods. We prove that the inexact HSIRA, RHSIRA, HJD and RHJD methods mimic their exact counterparts well when the inner linear systems are solved with only low or modest accuracy. We show that (i) the exact HSIRA and HJD expand subspaces better than the exact SIRA and JD and (ii) the exact RHSIRA and RHJD expand subspaces better than the exact HSIRA and HJD. Based on the theory, we design stopping criteria for inner solves. To be practical, we present restarted HSIRA, HJD, RHSIRA and RHJD algorithms. Numerical results demonstrate that these algorithms are much more efficient than the restarted standard SIRA and JD algorithms and furthermore the refined harmonic algorithms outperform the harmonic ones very substantially.Comment: 15 pages, 4 figure

    NEP: A Module for the Parallel Solution of Nonlinear Eigenvalue Problems in SLEPc

    Full text link
    [EN] SLEPc is a parallel library for the solution of various types of large-scale eigenvalue problems. Over the past few years, we have been developing a module within SLEPc, called NEP, that is intended for solving nonlinear eigenvalue problems. These problems can be defined by means of a matrix-valued function that depends nonlinearly on a single scalar parameter. We do not consider the particular case of polynomial eigenvalue problems (which are implemented in a different module in SLEPc) and focus here on rational eigenvalue problems and other general nonlinear eigenproblems involving square roots or any other nonlinear function. The article discusses how the NEP module has been designed to fit the needs of applications and provides a description of the available solvers, including some implementation details such as parallelization. Several test problems coming from real applications are used to evaluate the performance and reliability of the solvers.This work was partially funded by the Spanish Agencia Estatal de Investigacion AEI http://ciencia.gob.es under grants TIN2016-75985-P AEI and PID2019-107379RB-I00 AEI (including European Commission FEDER funds).Campos, C.; Roman, JE. (2021). NEP: A Module for the Parallel Solution of Nonlinear Eigenvalue Problems in SLEPc. ACM Transactions on Mathematical Software. 47(3):1-29. https://doi.org/10.1145/3447544S12947

    GENERALIZATIONS OF AN INVERSE FREE KRYLOV SUBSPACE METHOD FOR THE SYMMETRIC GENERALIZED EIGENVALUE PROBLEM

    Get PDF
    Symmetric generalized eigenvalue problems arise in many physical applications and frequently only a few of the eigenpairs are of interest. Typically, the problems are large and sparse, and therefore traditional methods such as the QZ algorithm may not be considered. Moreover, it may be impractical to apply shift-and-invert Lanczos, a favored method for problems of this type, due to difficulties in applying the inverse of the shifted matrix. With these difficulties in mind, Golub and Ye developed an inverse free Krylov subspace algorithm for the symmetric generalized eigenvalue problem. This method does not rely on shift-and-invert transformations for convergence acceleration, but rather a preconditioner is used. The algorithm suffers, however, in the presence of multiple or clustered eigenvalues. Also, it is only applicable to the location of extreme eigenvalues. In this work, we extend the method of Golub and Ye by developing a block generalization of their algorithm which enjoys considerably faster convergence than the usual method in the presence of multiplicities and clusters. Preconditioning techniques for the problems are discussed at length, and some insight is given into how these preconditioners accelerate the method. Finally we discuss a transformation which can be applied so that the algorithm extracts interior eigenvalues. A preconditioner based on a QR factorization with respect to the B-1 inner product is developed and applied in locating interior eigenvalues
    • …
    corecore