16,163 research outputs found

    Benchmarking in cluster analysis: A white paper

    Get PDF
    To achieve scientific progress in terms of building a cumulative body of knowledge, careful attention to benchmarking is of the utmost importance. This means that proposals of new methods of data pre-processing, new data-analytic techniques, and new methods of output post-processing, should be extensively and carefully compared with existing alternatives, and that existing methods should be subjected to neutral comparison studies. To date, benchmarking and recommendations for benchmarking have been frequently seen in the context of supervised learning. Unfortunately, there has been a dearth of guidelines for benchmarking in an unsupervised setting, with the area of clustering as an important subdomain. To address this problem, discussion is given to the theoretical conceptual underpinnings of benchmarking in the field of cluster analysis by means of simulated as well as empirical data. Subsequently, the practicalities of how to address benchmarking questions in clustering are dealt with, and foundational recommendations are made

    Noise resistant generalized parametric validity index of clustering for gene expression data

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Validity indices have been investigated for decades. However, since there is no study of noise-resistance performance of these indices in the literature, there is no guideline for determining the best clustering in noisy data sets, especially microarray data sets. In this paper, we propose a generalized parametric validity (GPV) index which employs two tunable parameters α and β to control the proportions of objects being considered to calculate the dissimilarities. The greatest advantage of the proposed GPV index is its noise-resistance ability, which results from the flexibility of tuning the parameters. Several rules are set to guide the selection of parameter values. To illustrate the noise-resistance performance of the proposed index, we evaluate the GPV index for assessing five clustering algorithms in two gene expression data simulation models with different noise levels and compare the ability of determining the number of clusters with eight existing indices. We also test the GPV in three groups of real gene expression data sets. The experimental results suggest that the proposed GPV index has superior noise-resistance ability and provides fairly accurate judgements

    Electricity clustering framework for automatic classification of customer loads

    Get PDF
    Clustering in energy markets is a top topic with high significance on expert and intelligent systems. The main impact of is paper is the proposal of a new clustering framework for the automatic classification of electricity customers’ loads. An automatic selection of the clustering classification algorithm is also highlighted. Finally, new customers can be assigned to a predefined set of clusters in the classificationphase. The computation time of the proposed framework is less than that of previous classification tech- niques, which enables the processing of a complete electric company sample in a matter of minutes on a personal computer. The high accuracy of the predicted classification results verifies the performance of the clustering technique. This classification phase is of significant assistance in interpreting the results, and the simplicity of the clustering phase is sufficient to demonstrate the quality of the complete mining framework.Ministerio de Economía y Competitividad TEC2013-40767-RMinisterio de Economía y Competitividad IDI- 2015004

    Cluster validity in clustering methods

    Get PDF

    Element-centric clustering comparison unifies overlaps and hierarchy

    Full text link
    Clustering is one of the most universal approaches for understanding complex data. A pivotal aspect of clustering analysis is quantitatively comparing clusterings; clustering comparison is the basis for many tasks such as clustering evaluation, consensus clustering, and tracking the temporal evolution of clusters. In particular, the extrinsic evaluation of clustering methods requires comparing the uncovered clusterings to planted clusterings or known metadata. Yet, as we demonstrate, existing clustering comparison measures have critical biases which undermine their usefulness, and no measure accommodates both overlapping and hierarchical clusterings. Here we unify the comparison of disjoint, overlapping, and hierarchically structured clusterings by proposing a new element-centric framework: elements are compared based on the relationships induced by the cluster structure, as opposed to the traditional cluster-centric philosophy. We demonstrate that, in contrast to standard clustering similarity measures, our framework does not suffer from critical biases and naturally provides unique insights into how the clusterings differ. We illustrate the strengths of our framework by revealing new insights into the organization of clusters in two applications: the improved classification of schizophrenia based on the overlapping and hierarchical community structure of fMRI brain networks, and the disentanglement of various social homophily factors in Facebook social networks. The universality of clustering suggests far-reaching impact of our framework throughout all areas of science

    A survey on utilization of data mining approaches for dermatological (skin) diseases prediction

    Get PDF
    Due to recent technology advances, large volumes of medical data is obtained. These data contain valuable information. Therefore data mining techniques can be used to extract useful patterns. This paper is intended to introduce data mining and its various techniques and a survey of the available literature on medical data mining. We emphasize mainly on the application of data mining on skin diseases. A categorization has been provided based on the different data mining techniques. The utility of the various data mining methodologies is highlighted. Generally association mining is suitable for extracting rules. It has been used especially in cancer diagnosis. Classification is a robust method in medical mining. In this paper, we have summarized the different uses of classification in dermatology. It is one of the most important methods for diagnosis of erythemato-squamous diseases. There are different methods like Neural Networks, Genetic Algorithms and fuzzy classifiaction in this topic. Clustering is a useful method in medical images mining. The purpose of clustering techniques is to find a structure for the given data by finding similarities between data according to data characteristics. Clustering has some applications in dermatology. Besides introducing different mining methods, we have investigated some challenges which exist in mining skin data

    Taming Wild High Dimensional Text Data with a Fuzzy Lash

    Full text link
    The bag of words (BOW) represents a corpus in a matrix whose elements are the frequency of words. However, each row in the matrix is a very high-dimensional sparse vector. Dimension reduction (DR) is a popular method to address sparsity and high-dimensionality issues. Among different strategies to develop DR method, Unsupervised Feature Transformation (UFT) is a popular strategy to map all words on a new basis to represent BOW. The recent increase of text data and its challenges imply that DR area still needs new perspectives. Although a wide range of methods based on the UFT strategy has been developed, the fuzzy approach has not been considered for DR based on this strategy. This research investigates the application of fuzzy clustering as a DR method based on the UFT strategy to collapse BOW matrix to provide a lower-dimensional representation of documents instead of the words in a corpus. The quantitative evaluation shows that fuzzy clustering produces superior performance and features to Principal Components Analysis (PCA) and Singular Value Decomposition (SVD), two popular DR methods based on the UFT strategy
    corecore