1,046 research outputs found

    Improved linear programming decoding of LDPC codes and bounds on the minimum and fractional distance

    Full text link
    We examine LDPC codes decoded using linear programming (LP). Four contributions to the LP framework are presented. First, a new method of tightening the LP relaxation, and thus improving the LP decoder, is proposed. Second, we present an algorithm which calculates a lower bound on the minimum distance of a specific code. This algorithm exhibits complexity which scales quadratically with the block length. Third, we propose a method to obtain a tight lower bound on the fractional distance, also with quadratic complexity, and thus less than previously-existing methods. Finally, we show how the fundamental LP polytope for generalized LDPC codes and nonbinary LDPC codes can be obtained.Comment: 17 pages, 8 figures, Submitted to IEEE Transactions on Information Theor

    Proving Threshold Saturation for Nonbinary SC-LDPC Codes on the Binary Erasure Channel

    Get PDF
    We analyze nonbinary spatially-coupled low-density parity-check (SC-LDPC) codes built on the general linear group for transmission over the binary erasure channel. We prove threshold saturation of the belief propagation decoding to the potential threshold, by generalizing the proof technique based on potential functions recently introduced by Yedla et al.. The existence of the potential function is also discussed for a vector sparse system in the general case, and some existence conditions are developed. We finally give density evolution and simulation results for several nonbinary SC-LDPC code ensembles.Comment: in Proc. 2014 XXXIth URSI General Assembly and Scientific Symposium, URSI GASS, Beijing, China, August 16-23, 2014. Invited pape

    Polar Coding for Achieving the Capacity of Marginal Channels in Nonbinary-Input Setting

    Full text link
    Achieving information-theoretic security using explicit coding scheme in which unlimited computational power for eavesdropper is assumed, is one of the main topics is security consideration. It is shown that polar codes are capacity achieving codes and have a low complexity in encoding and decoding. It has been proven that polar codes reach to secrecy capacity in the binary-input wiretap channels in symmetric settings for which the wiretapper's channel is degraded with respect to the main channel. The first task of this paper is to propose a coding scheme to achieve secrecy capacity in asymmetric nonbinary-input channels while keeping reliability and security conditions satisfied. Our assumption is that the wiretap channel is stochastically degraded with respect to the main channel and message distribution is unspecified. The main idea is to send information set over good channels for Bob and bad channels for Eve and send random symbols for channels that are good for both. In this scheme the frozen vector is defined over all possible choices using polar codes ensemble concept. We proved that there exists a frozen vector for which the coding scheme satisfies reliability and security conditions. It is further shown that uniform distribution of the message is the necessary condition for achieving secrecy capacity.Comment: Accepted to be published in "51th Conference on Information Sciences and Systems", Baltimore, Marylan

    Semidefinite programming bounds for Lee codes

    Get PDF
    For q,n,d∈Nq,n,d \in \mathbb{N}, let AqL(n,d)A_q^L(n,d) denote the maximum cardinality of a code C⊆ZqnC \subseteq \mathbb{Z}_q^n with minimum Lee distance at least dd, where Zq\mathbb{Z}_q denotes the cyclic group of order qq. We consider a semidefinite programming bound based on triples of codewords, which bound can be computed efficiently using symmetry reductions, resulting in several new upper bounds on AqL(n,d)A_q^L(n,d). The technique also yields an upper bound on the independent set number of the nn-th strong product power of the circular graph Cd,qC_{d,q}, which number is related to the Shannon capacity of Cd,qC_{d,q}. Here Cd,qC_{d,q} is the graph with vertex set Zq\mathbb{Z}_q, in which two vertices are adjacent if and only if their distance (mod qq) is strictly less than dd. The new bound does not seem to improve significantly over the bound obtained from Lov\'asz theta-function, except for very small nn.Comment: 14 pages. arXiv admin note: text overlap with arXiv:1703.0517

    Semidefinite bounds for nonbinary codes based on quadruples

    Get PDF
    For nonnegative integers q,n,dq,n,d, let Aq(n,d)A_q(n,d) denote the maximum cardinality of a code of length nn over an alphabet [q][q] with qq letters and with minimum distance at least dd. We consider the following upper bound on Aq(n,d)A_q(n,d). For any kk, let \CC_k be the collection of codes of cardinality at most kk. Then Aq(n,d)A_q(n,d) is at most the maximum value of ∑v∈[q]nx({v})\sum_{v\in[q]^n}x(\{v\}), where xx is a function \CC_4\to R_+ such that x(∅)=1x(\emptyset)=1 and x(C)=0x(C)=0 if CC has minimum distance less than dd, and such that the \CC_2\times\CC_2 matrix (x(C\cup C'))_{C,C'\in\CC_2} is positive semidefinite. By the symmetry of the problem, we can apply representation theory to reduce the problem to a semidefinite programming problem with order bounded by a polynomial in nn. It yields the new upper bounds A4(6,3)≤176A_4(6,3)\leq 176, A4(7,4)≤155A_4(7,4)\leq 155, A5(7,4)≤489A_5(7,4)\leq 489, and A5(7,5)≤87A_5(7,5)\leq 87
    • …
    corecore