2,593 research outputs found

    Kalman-variant estimators for state of charge in lithium-sulfur batteries

    Get PDF
    Lithium-sulfur batteries are now commercially available, offering high specific energy density, low production costs and high safety. However, there is no commercially-available battery management system for them, and there are no published methods for determining state of charge in situ. This paper describes a study to address this gap. The properties and behaviours of lithium-sulfur are briefly introduced, and the applicability of ‘standard’ lithium-ion state-of-charge estimation methods is explored. Open-circuit voltage methods and ‘Coulomb counting’ are found to have a poor fit for lithium-sulfur, and model-based methods, particularly recursive Bayesian filters, are identified as showing strong promise. Three recursive Bayesian filters are implemented: an extended Kalman filter (EKF), an unscented Kalman filter (UKF) and a particle filter (PF). These estimators are tested through practical experimentation, considering both a pulse-discharge test and a test based on the New European Driving Cycle (NEDC). Experimentation is carried out at a constant temperature, mirroring the environment expected in the authors' target automotive application. It is shown that the estimators, which are based on a relatively simple equivalent-circuit–network model, can deliver useful results. If the three estimators implemented, the unscented Kalman filter gives the most robust and accurate performance, with an acceptable computational effort

    Challenges with bearings only tracking for missile guidance systems and how to cope with them.

    Get PDF
    This paper addresses the problem of closed loop missile guidance using bearings and target angular extent information. Comparison is performed between particle filtering methods and derivative free methods. The extent information characterizes target size and we show how this can help compensate for observability problems. We demonstrate that exploiting angular extent information improves filter estimation accuracy. The performance of the filters has been studied over a testing scenario with a static target, with respect to accuracy, sensitivity to perturbations in initial conditions and in different seeker modes (active, passive and semi-active)

    Scaled unscented transform Gaussian sum filter: theory and application

    Full text link
    In this work we consider the state estimation problem in nonlinear/non-Gaussian systems. We introduce a framework, called the scaled unscented transform Gaussian sum filter (SUT-GSF), which combines two ideas: the scaled unscented Kalman filter (SUKF) based on the concept of scaled unscented transform (SUT), and the Gaussian mixture model (GMM). The SUT is used to approximate the mean and covariance of a Gaussian random variable which is transformed by a nonlinear function, while the GMM is adopted to approximate the probability density function (pdf) of a random variable through a set of Gaussian distributions. With these two tools, a framework can be set up to assimilate nonlinear systems in a recursive way. Within this framework, one can treat a nonlinear stochastic system as a mixture model of a set of sub-systems, each of which takes the form of a nonlinear system driven by a known Gaussian random process. Then, for each sub-system, one applies the SUKF to estimate the mean and covariance of the underlying Gaussian random variable transformed by the nonlinear governing equations of the sub-system. Incorporating the estimations of the sub-systems into the GMM gives an explicit (approximate) form of the pdf, which can be regarded as a "complete" solution to the state estimation problem, as all of the statistical information of interest can be obtained from the explicit form of the pdf ... This work is on the construction of the Gaussian sum filter based on the scaled unscented transform
    • …
    corecore