1,275 research outputs found

    Quality Enhancement for Underwater Images using Various Image Processing Techniques: A Survey

    Get PDF
    Underwater images are essential to identify the activity of underwater objects. It played a vital role to explore and utilizing aquatic resources. The underwater images have features such as low contrast, different noises, and object imbalance due to lack of light intensity. CNN-based in-deep learning approaches have improved underwater low-resolution photos during the last decade. Nevertheless, still, those techniques have some problems, such as high MSE, PSNT and high SSIM error rate. They solve the problem using different experimental analyses; various methods are studied that effectively treat different underwater image distorted scenes and improve contrast and color deviation compared to other algorithms. In terms of the color richness of the resulting images and the execution time, there are still deficiencies with the latest algorithm. In future work, the structure of our algorithm will be further adjusted to shorten the execution time, and optimization of the color compensation method under different color deviations will also be the focus of future research. With the wide application of underwater vision in different scientific research fields, underwater image enhancement can play an increasingly significant role in the process of image processing in underwater research and underwater archaeology. Most of the target images of the current algorithms are shallow water images. When the artificial light source is added to deep water images, the raw images will face more diverse noises, and image enhancement will face more challenges. As a result, this study investigates the numerous existing systems used for quality enhancement of underwater mages using various image processing techniques. We find various gaps and challenges of current systems and build the enhancement of this research for future improvement. Aa a result of this overview is to define the future problem statement to enhance this research and overcome the challenges faced by previous researchers. On other hand also improve the accuracy in terms of reducing MSE and enhancing PSNR etc

    Image enhancement for underwater mining applications

    Get PDF
    The exploration of water bodies from the sea to land filled water spaces has seen a continuous increase with new technologies such as robotics. Underwater images is one of the main sensor resources used but suffer from added problems due to the environment. Multiple methods and techniques have provided a way to correct the color, clear the poor quality and enhance the features. In this thesis work, we present the work of an Image Cleaning and Enhancement Technique which is based on performing color correction on images incorporated with Dark Channel Prior (DCP) and then taking the converted images and modifying them into the Long, Medium and Short (LMS) color space, as this space is the region in which the human eye perceives colour. This work is being developed at LSA (Laboratório de Sistema Autónomos) robotics and autonomous systems laboratory. Our objective is to improve the quality of images for and taken by robots with the particular emphasis on underwater flooded mines. This thesis work describes the architecture and the developed solution. A comparative analysis with state of the art methods and of our proposed solution is presented. Results from missions taken by the robot in operational mine scenarios are presented and discussed and allowing for the solution characterization and validation

    Improving images in turbid water through enhanced color correction and particle swarm-intelligence fusion (CCPF)

    Get PDF
    When light travels through a water medium, selective attenuation and scattering have a profound impact on the underwater image. These limitations reduce image quality and impede the ability to perform visual tasks. The suggested integrated color correction with intelligence fusion of particle swarm technique (CCPF) is designed with four phases. The first phase presents a novel way to make improvement on underwater color cast. Limit the improvement to only red color channel. In the second phase, an image is then neutralized from the original image by brightness reconstruction technique resulting in enhancing the image contrast. Next, the mean adjustment based on particle swarm intelligence is implemented to improve the image detail. With the swarm intelligence method, the mean values of inferior color channels are shifted to be close to the mean value of a good color channel. Lastly, a fusion between the brightness reconstructed histogram and modified mean particle swarm intelligence histogram is applied to balance the image color. Analysis of underwater images taken in different depths shows that the proposed CCPF method improves the quality of the output image in terms of neutralizing effectiveness and details accuracy, consequently, significantly outperforming the other state-of-the-art methods. The proposed CCPF approach produces highest average entropy value of 7.823 and average UIQM value of 6.287

    Empowering Low-Light Image Enhancer through Customized Learnable Priors

    Full text link
    Deep neural networks have achieved remarkable progress in enhancing low-light images by improving their brightness and eliminating noise. However, most existing methods construct end-to-end mapping networks heuristically, neglecting the intrinsic prior of image enhancement task and lacking transparency and interpretability. Although some unfolding solutions have been proposed to relieve these issues, they rely on proximal operator networks that deliver ambiguous and implicit priors. In this work, we propose a paradigm for low-light image enhancement that explores the potential of customized learnable priors to improve the transparency of the deep unfolding paradigm. Motivated by the powerful feature representation capability of Masked Autoencoder (MAE), we customize MAE-based illumination and noise priors and redevelop them from two perspectives: 1) \textbf{structure flow}: we train the MAE from a normal-light image to its illumination properties and then embed it into the proximal operator design of the unfolding architecture; and m2) \textbf{optimization flow}: we train MAE from a normal-light image to its gradient representation and then employ it as a regularization term to constrain noise in the model output. These designs improve the interpretability and representation capability of the model.Extensive experiments on multiple low-light image enhancement datasets demonstrate the superiority of our proposed paradigm over state-of-the-art methods. Code is available at https://github.com/zheng980629/CUE.Comment: Accepted by ICCV 202

    A Non-Reference Evaluation of Underwater Image Enhancement Methods Using a New Underwater Image Dataset

    Get PDF
    The rise of vision-based environmental, marine, and oceanic exploration research highlights the need for supporting underwater image enhancement techniques to help mitigate water effects on images such as blurriness, low color contrast, and poor quality. This paper presents an evaluation of common underwater image enhancement techniques using a new underwater image dataset. The collected dataset is comprised of 100 images of aquatic plants taken at a shallow depth of up to three meters from three different locations in the Great Lake Superior, USA, via a Remotely Operated Vehicle (ROV) equipped with a high-definition RGB camera. In particular, we use our dataset to benchmark nine state-of-the-art image enhancement models at three different depths using a set of common non-reference image quality evaluation metrics. Then we provide a comparative analysis of the performance of the selected models at different depths and highlight the most prevalent ones. The obtained results show that the selected image enhancement models are capable of producing considerably better-quality images with some models performing better than others at certain depths
    • …
    corecore