38 research outputs found

    Performance Comparison of Stacked Dual-Metal Gate Engineered Cylindrical Surrounding Double-Gate MOSFET

    Get PDF
    In this research work, a Cylindrical Surrounding Double-Gate (CSDG) MOSFET design in a stacked-Dual Metal Gate (DMG) architecture has been proposed to incorporate the ability of gate metal variation in channel field formation. Further, the internal gate's threshold voltage (VTH1) could be reduced compared to the external gate (VTH2) by arranging the gate metal work-function in Double Gate devices. Therefore, a device design of CSDG MOSFET has been realized to instigate the effect of Dual Metal Gate (DMG) stack architecture in the CSDG device. The comparison of device simulation shown optimized electric field and surface potential profile. The gradual decrease of metal work function towards the drain also improves the Drain Induced Barrier Lowering (DIBL) and subthreshold characteristics. The physics-based analysis of gate stack CSDG MOSFET that operates in saturation involving the analogy of cylindrical dual metal gates has been considered to evaluate the performance improvements. The insights obtained from the results using the gate-stack dual metal structure of CSDG are quite promising, which can serve as a guide to further reduce the threshold voltage roll-off, suppress the Hot Carrier Effects (HCEs) and Short Channel Effects (SCEs)

    Design and analytical performance of subthreshold characteristics of CSDG MOSFET.

    Get PDF
    Masters Degree. University of KwaZulu-Natal, Durban.The downscaling of the Metal-Oxide-Semiconductor Field Effect Transistors (MOSFET) devices have been the driving force for Nanotechnology and Very Large-Scale Integration (VLSI) systems. This is affirmed by Moore’s law which states that “The number of transistors placed in an Integrated Circuit (IC) or chip doubles approximately every two years”. The main objectives for the transistor scaling are: to increase functionality, switching speed, packing density and lower the operating power of the ICs. However, the downscaling of the MOSFET device is posed with various challenges such as the threshold roll-off, Drain Induced Barrier Lowing (DIBL), surface scattering, and velocity saturation known as Short Channel Effects (SCEs). To overcome these challenges, a cylindrically structured MOSFET is employed because it increases the switching speed, current flow, packing density, and provides better immunity to SCEs. This thesis proposes a Cylindrical Surrounding Double-Gate (CSDG) MOSFET which is an extended version of Double-Gate (DG) MOSFET and Cylindrical Surrounding-Gate (CSG) MOSFET in terms of form factor and current drive respectively. Furthermore, employing the Evanescent-Mode analysis (EMA) of a two-dimensional (2D) Poisson solution, the performance analysis of the novel CSDG MOSFET is presented. The channel length, radii Silicon film difference, and the oxide thickness are investigated for the CSDG MOSFET at the subthreshold regime. Using the minimum channel potential expression obtained by EMA, the threshold voltage and the subthreshold swing model of the proposed CSDG MOSFET are evaluated and discussed. The device performance is verified with various values of radii Silicon film difference and gate oxide thickness Finally, the low operating power and switching characteristics of the proposed CSDG MOSFET has been employed to design a simple CSDG bridge rectifier circuit for micropower electricity (energy harvester). Similar to the traditional MOSFETs, the switching process of CSDG MOSFET is in two operating modes: switch-ON (conduction of current between the drain and source) or switched-OFF (no conduction of current). However, unlike the traditional diode bridge rectifier which utilizes four diodes for its operation, the CSDG bridge rectifier circuits employs only two CSDGs (n-channel and p- channel) for its operation. This optimizes cost and improves efficiency. Finally, the results from the analyses demonstrate that the proposed CSDG MOSFET is a promising device for nanotechnology and self-micro powered device system application

    Analytical Modeling of Ultrashort-Channel MOS Transistors

    Get PDF
    Les geometries de transistors d'avui són al rang de nanòmetres d'un sol dígit. En conseqüència, les funcionalitats dels dispositius es veuen afectades negativament pels efectes de canal curt i de mecànica quàntica (SCE i QMEs). Una transició de la geometria del transistor d'efecte de camp de tipus FinFET a Gate-All-Around (GAA) FETs com FETs de nanofils cilíndrics (NW) i de nanoplaques de silici (SiNS) es preveuen en els propers nodes tecnològics per suprimir els SCE i garantir una major miniaturització del MOSFET Aquesta dissertació se centra en el modelat analític de FETs de tipus NW i SiNS de canal ultracurt.S'introdueix un concepte de dimensions de doble porta (DG) equivalent per transferir un model de potencial de DG analític a FET de NW. Un model de corrent de DG compacte es modifica aprofitant la simetria rotacional dels FET de NW. L'efecte del confinament quàntic (QC) és implementat considerant l'eixamplament addicional de la banda prohibida al càlcul d'una concentració de portadors de càrrega intrínseca efectiva i al càlcul del voltatge llindar. L'efecte de corrent túnel directe de font a drenador (DSDT) a SiNS FET ultraescalats es modela amb el nou mètode de wavelets. Aquest model calcula analíticament la probabilitat de tunelització per a cada energia de l'electró, aproximant la forma de la barrera potencial mitjançant una barrera rectangular amb una altura de barrera equivalent. A causa de la fórmula de corrent túnel de Tsu-Esaki no analíticament integrable, es presenta un mètode analític anomenat model quasi-compacte (QCM). Aquest enfocament requereix, entre altres aproximacions, una iteració de Newton i una interpolació lineal de la densitat de corrent amb efecte túnel. A més, es realitza una anàlisi criogènica de temperatura i dopatge. S'investiga la forta influència de la distància del nivell de Fermi a la font des de la vora de la banda de conducció sobre el pendent subumbral, el corrent i la reducció de la barrera induïda per drenador (DIBL). A més, es demostra i explica la fusió de dos efectes relacionats amb el pendent subumbral i el DIBL. La validesa del concepte de dimensions DG equivalents es demostra mitjançant el mesurament i les dades de simulació de TCAD Sentaurus, mentre que el mètode de wavelets es verifica mitjançant simulacions NanoMOS NEGF.Las geometrías de transistores de hoy están en el rango de nanómetros de un solo dígito. En consecuencia, las funcionalidades de los dispositivos se ven afectadas negativamente por los efectos de canal corto y de mecánica cuántica (SCE y QMEs). Una transición de la geometría del transistor de efecto de campo de tipo FinFET a Gate-All -Around (GAA) FETs tales como FETs de nanohilos cilíndricos (NW) y de nanoplacas de silicio (SiNS) se prevén en los próximos nodos tecnológicos para suprimir los SCE y garantizar una mayor miniaturización del MOSFET. Esta disertación se centra en el modelado analítico de FETs de tipo NW y SiNS de canal ultracorto. Se introduce un concepto de dimensiones de doble puerta (DG) equivalente para transferir un modelo de potencial de DG analítico a FET de NW. Un modelo de corriente de DG compacto se modifica aprovechando la simetría rotacional de los FET de NW. El efecto del confinamiento cuántico (QC) es implementado considerando el ensanchamiento adicional de la banda prohibida en el cálculo de una concentración de portadores de carga intrínseca efectiva y en el cálculo del voltaje de umbral. El efecto de corriente túnel directa de fuente a drenador (DSDT) en SiNS FET ultraescalados se modela con el nuevo método de wavelets. Este modelo calcula analíticamente la probabilidad de tunelización para cada energía del electrón aproximando la forma de la barrera de potencial mediante una barrera rectangular con una altura de barrera equivalente. Usando la fórmula de corriente túnel de Tsu-Esaki no analíticamente integrable, se presenta un método analítico denominado modelo cuasi-compacto (QCM), querequiere una iteración de Newton y una interpolación lineal de la densidad de corriente de efecto túnel. Además, se realiza un análisis criogénico en temperatura y dopaje. Se investiga la fuerte influencia del nivel de Fermi de la fuente la sobre la pendiente subumbral, la corriente y la reducción del efecto DIBL. Además, se demuestra y explica la fusión de dos efectos relacionados con la pendiente subumbral y el DIBL. La validez del concepto de dimensiones DG equivalentes se demuestra mediante datos de mediciones y de simulaciones TCAD Sentaurus, mientras que el método de wavelets se verifica mediante simulaciones NanoMOS NEGF.Today's transistor geometries are in the single-digit nanometer range. Consequently, device functionalities are negatively affected by short-channel and quantum mechanical effects (SCEs & QMEs). A transition from fin field-effect transistor (FinFET) geometry to gate-all-around (GAA) FETs such as cylindrical nanowire (NW) and silicon nanosheet (SiNS) FETs is envisioned in the upcoming technology nodes to suppress SCEs and ensure further MOSFET miniaturization. This dissertation focuses on the analytical modeling of ultrashort-channel NW and SiNS FETs. An equivalent double-gate (DG) dimensions concept is introduced to transfer an analytical DG potential model to NW FETs. A compact DG current model is modified by exploiting the rotational symmetry of NW FETs. The effect of quantum confinement (QC) is implemented by considering the additional bandgap widening in the calculation of an effective intrinsic charge carrier concentration and in the calculation of the threshold voltage. The effect of direct source-to-drain tunneling (DSDT) current in ultrascaled SiNS FETs is modeled with the new wavelet approach. This model calculates the tunneling probability analytically for each electron energy by approximating the potential barrier shape by a rectangular barrier with an equivalent barrier height. Due to the nonanalytically integrable Tsu-Esaki tunneling formula an analytical approach named quasi-compact model (QCM) is presented. This approach requires, among other approximations, a Newton iteration, and a linear interpolation of the tunneling current density. Furthermore, a cryogenic temperature and doping analysis is performed. The strong influence of the distance of the source related Fermi level from the conduction band edge on the subthreshold swing, current, and drain-induced barrier lowering (DIBL) saturation is investigated. Also, the merging of two subthreshold swing and DIBL effects is demonstrated and explained. The validity of the equivalent DG dimensions concept is proven by measurement and TCAD Sentaurus simulation data, while the wavelet approach is verified by NanoMOS NEGF simulations

    Design evolution of dual-material gate structure in cylindrical surrounding double-gate (CSDG) MOSFET using physics-based analytical modeling.

    Get PDF
    Doctoral Degree. University of KwaZulu- Natal, Durban.The Metal Oxide Semiconductor Field Effect Transistor (MOSFET) is the fundamental component in present Micro and Nano-electronics device applications, such as switching, memory devices, communication devices, etc. MOSFET’s dimension has shrunk down following Moore’s law to attain high-speed operation and packing density integration. The scaling of conventional MOSFET has been the most prominent technological challenge in the past few years because the decreasing device dimensions increase the charge sharing from the source to the drain and that in turn give rises to the reduced gate-control over the channel, hot carrier induced degradation, and other SCEs. These undesired effects devaluate the device performance that compels optimum device design analysis for particular operating conditions. Therefore, several innovative device design/architectures, including Double-gate, FinFET, Surrounding gate MOSFET, etc., have been developed to mitigate device scaling challenges. Comprehensive research can be traced long for one such promising gate-all-around MOSFET, i.e., Cylindrical Surrounding Double-Gate (CSDG) MOSFET centrally hollow concentric structure, provides an additional internal control gate that improves the device electrical performance and offers easy accessibility. There have been several developments in terms of improvements, and applications of CSDG MOSFET have been practiced since after its evolution. This thesis’s work has been targeted to incorporate the gate material engineering in the CSDG structure after appropriate analysis of device physics-based modeling. In particular to the proposed structure, the electric field, pinch off capacitance, and after that thickness of the device parameters’ dependence have been mathematically derived from attaining the objective. Finally, a model based on a dual-material gate in CSDG MOSFET has been proposed. The electrical field in CSDG MOSFET has been analyzed in detail using a mathematical derivation of device physics, including the Surface-Potential, threshold voltage, and the gate-oxide capacitances of the internal and external part of the device. Further, the gate-oxide capacitance of CSDG MOSFET, particularly to the device pinch-off condition, has been derived. Since the device operation and analysis at the shorter channel are not similar to conventional long-channel MOSFETs, the depletion-width variation has been studied. The identified notion has been applied to derive the approximate numerical solution and silicon thickness inducing parameters for CSDG MOSFET to deploy the improvements in the device performance and novel design modifications. As the gate-material and gate-stack engineering is an alternative to overcome the device performance degradation by enhancing the charge transport efficiency, the CSDG MOSFET in a novel Dual-Metal Gate (DMG) structure design has been proposed and analyzed using the solution of 2D Poisson’s equations in the geometrical boundary conditions of the device. The model expressions obtained solution using the proposed structure has been compared with a single metal gate structure. Finally, it has been analyzed that the proposed model exhibits an excellent match with the analytical model. The obtained DMG device structure advances the carrier velocity and transport efficiency, resulting in the surface-potential profile caused by dissimilar gate metal work-function. The superior device characteristics obtained employing a dual-material structure in CSDG are promising and can reduce the threshold voltage roll-off, suppress the hot-carrier effects and SCEs

    Design, Modeling and Analysis of Non-classical Field Effect Transistors

    Get PDF
    Transistor scaling following per Moore\u27s Law slows down its pace when entering into nanometer regime where short channel effects (SCEs), including threshold voltage fluctuation, increased leakage current and mobility degradation, become pronounced in the traditional planar silicon MOSFET. In addition, as the demand of diversified functionalities rises, conventional silicon technologies cannot satisfy all non-digital applications requirements because of restrictions that stem from the fundamental material properties. Therefore, novel device materials and structures are desirable to fuel further evolution of semiconductor technologies. In this dissertation, I have proposed innovative device structures and addressed design considerations of those non-classical field effect transistors for digital, analog/RF and power applications with projected benefits. Considering device process difficulties and the dramatic fabrication cost, application-oriented device design and optimization are performed through device physics analysis and TCAD modeling methodology to develop design guidelines utilizing transistor\u27s improved characteristics toward application-specific circuit performance enhancement. Results support proposed device design methodologies that will allow development of novel transistors capable of overcoming limitation of planar nanoscale MOSFETs. In this work, both silicon and III-V compound devices are designed, optimized and characterized for digital and non-digital applications through calibrated 2-D and 3-D TCAD simulation. For digital functionalities, silicon and InGaAs MOSFETs have been investigated. Optimized 3-D silicon-on-insulator (SOI) and body-on-insulator (BOI) FinFETs are simulated to demonstrate their impact on the performance of volatile memory SRAM module with consideration of self-heating effects. Comprehensive simulation results suggest that the current drivability degradation due to increased device temperature is modest for both devices and corresponding digital circuits. However, SOI FinFET is recommended for the design of low voltage operation digital modules because of its faster AC response and better SCEs management than the BOI structure. The FinFET concept is also applied to the non-volatile memory cell at 22 nm technology node for low voltage operation with suppressed SCEs. In addition to the silicon technology, our TCAD estimation based on upper projections show that the InGaAs FinFET, with superior mobility and improved interface conditions, achieve tremendous drive current boost and aggressively suppressed SCEs and thereby a strong contender for low-power high-performance applications over the silicon counterpart. For non-digital functionalities, multi-fin FETs and GaN HEMT have been studied. Mixed-mode simulations along with developed optimization guidelines establish the realistic application potential of underlap design of silicon multi-Fin FETs for analog/RF operation. The device with underlap design shows compromised current drivability but improve analog intrinsic gain and high frequency performance. To investigate the potential of the novel N-polar GaN material, for the first time, I have provided calibrated TCAD modeling of E-mode N-polar GaN single-channel HEMT. In this work, I have also proposed a novel E-mode dual-channel hybrid MIS-HEMT showing greatly enhanced current carrying capability. The impact of GaN layer scaling has been investigated through extensive TCAD simulations and demonstrated techniques for device optimization

    Silicon on ferroelectric insulator field effect transistor (SOF-FET) a new device for the next generation ultra low power circuits

    Get PDF
    Title from PDF of title page, viewed on March 12, 2014Thesis advisor: Masud H. ChowdhuryVitaIncludes bibliographical references (pages 116-131)Thesis (M. S.)--School of Computer and Engineering. University of Missouri--Kansas City, 2013Field effect transistors (FETs) are the foundation for all electronic circuits and processors. These devices have progressed massively to touch its final steps in subnanometer level. Left and right proposals are coming to rescue this progress. Emerging nano-electronic devices (resonant tunneling devices, single-atom transistors, spin devices, Heterojunction Transistors rapid flux quantum devices, carbon nanotubes, and nanowire devices) took a vast share of current scientific research. Non-Si electronic materials like III-V heterostructure, ferroelectric, carbon nanotubes (CNTs), and other nanowire based designs are in developing stage to become the core technology of non-classical CMOS structures. FinFET present the current feasible commercial nanotechnology. The scalability and low power dissipation of this device allowed for an extension of silicon based devices. High short channel effect (SCE) immunity presents its major advantage. Multi-gate structure comes to light to improve the gate electrostatic over the channel. The new structure shows a higher performance that made it the first candidate to substitute the conventional MOSFET. The device also shows a future scalability to continue Moor’s Law. Furthermore, the device is compatible with silicon fabrication process. Moreover, the ultra-low-power (ULP) design required a subthreshold slope lower than the thermionic-emission limit of 60mV/ decade (KT/q). This value was unbreakable by the new structure (SOI-FinFET). On the other hand most of the previews proposals show the ability to go beyond this limit. However, those pre-mentioned schemes have publicized a very complicated physics, design difficulties, and process non-compatibility. The objective of this research is to discuss various emerging nano-devices proposed for ultra-low-power designs and their possibilities to replace the silicon devices as the core technology in the future integrated circuit. This thesis proposes a novel design that exploits the concept of negative capacitance. The new field effect transistor (FET) based on ferroelectric insulator named Silicon-On-Ferroelectric Insulator Field Effect Transistor (SOF-FET). This proposal is a promising methodology for future ultra-lowpower applications, because it demonstrates the ability to replace the silicon-bulk based MOSFET, and offers subthreshold swing significantly lower than 60mV/decade and reduced threshold voltage to form a conducting channel. The SOF-FET can also solve the issue of junction leakage (due to the presence of unipolar junction between the top plate of the negative capacitance and the diffused areas that form the transistor source and drain). In this device the charge hungry ferroelectric film already limits the leakage.Abstract -- List of illustrations - List of tables -- Acknowledgements -- Dedication -- Introduction -- Carbon nanotube field effect transistor -- Multi-gate transistors -FinFET -- Subthreshold swing -- Tunneling field effect transistors -- I-mos and nanowire fets -- Ferroelectric based field effect transistors -- An analytical model to approximate the subthreshold swing for soi-finfet -- Silicon-on-ferroelectric insulator field effect transistor (SOF-FET) -- Current-voltage characteristics of sof-fet -- Advantages, manufacturing process and future work of the proposed device -- Appendix -- Reference

    Quantum Mechanical Effects on MOSFET Scaling

    Get PDF
    This thesis describes advanced modeling of nanoscale bulk MOSFETs incorporating critical quantum mechanical effects such as gate direct tunneling and energy quantization of carriers. An explicit expression of gate direct tunneling for thin gate oxides has been developed by solving the Schroinger equation analytically. In addition, the impact of different gate electrode as well as gate insulation materials on the gate direct tunneling is explored. This results in an analytical estimation of the potential solutions to excessive gate leakage current. The energy quantization analysis involves the derivation of a quantum mechanical charge distribution model by solving the coupled Poisson and Schroinger equations. Based on the newly developed charge distribution model, threshold voltage and subthreshold swing models are obtained. A transregional drain current model which takes into account the quantum mechanical correction on device parameters is derived. Results from this model show good agreement with numeric simulation results of both long-channel and short-channel MOSFETs.The models derived here are used to project MOSFET scaling limits. Tunneling and quantization effects cause large power dissipation, low drive current, and strong sensitivities to process variation, which greatly limit CMOS scaling. Developing new materials and structures is imminent to extend the scaling process.Ph.D.Committee Chair: James D. Meindl; Committee Member: Ian F. Akyildiz; Committee Member: Philip First; Committee Member: Russell Dupuis; Committee Member: Willianm R. Calle

    Caractérisation électrique des propriétés d'interface dans les MOSFET nanométriques par des mesures de bruit basse fréquence

    Get PDF
    In this thesis, electrical properties of gate oxide/channel interface in ultra-scaled nanowire (NW) MOSFETs were experimentally investigated by carrier transport and low-frequency noise (LFN) characterizations. NW FETs, which have aggressively downscaled cross-section of the body, are strong candidates for near future CMOS node. However, the interface quality could be a critical issue due to the large surface/volume ratio, the multiple surface orientations, and additional strain technology to enhance the performance. Understanding of carrier transport and channel interface quality in NW FETs with advanced high-k/metal gate is thus particularly important. LFN provides deep insights into the interface properties of MOSFET without lower limit of required channel size. LFN measurement thus can be a powerful technique for ultra-scaled NW FETs. Also, fitting mobility (such as low-field mobility) extraction by Y-function method is an efficient method. Omega-gate NW FETs were fabricated from FD-SOI substrates, and with Hf-based high-k/metal gate (HfSiON/TiN), reducing detrimental effects by device downscaling. In addition, strain technologies to the channel were additively processed. Tensile strained-SOI substrate was used for NMOS, whereas compressive stressors were used for PMOS devices. Strained Si channel for PMOS was processed by raised SiGe S/D and CESL formations. Strained SiGe channel (SGOI) was also fabricated for further high-performance PMOS FETs. Firstly, the most common Id-Vg was characterized in single-channel NW FETs as the basic performance. Reference SOI NWs provided the excellent static control down to short channel of 17nm. Stressors dramatically enhanced on-current owing to a modification of channel energy-band structure. Then, extracted low-field mobility in NWs also showed large improvement of the performance by stressors. The mobility extraction effectively evaluated FET performance even for ultra-scaled NWs. Next, LFN investigated for various technological and architectural parameters. Carrier number fluctuations with correlated mobility fluctuations (CNF+CMF) model described 1/f noise in all our FETs down to the shortest NWs. Drain current noise behavior was basically similar in both N- and PMOS FETs regardless of technological splits. Larger 1/f noise stemming from S/D regions in PMOS FETs was perfectly interpreted by the CNF+CMF model completed with Rsd fluctuations. This observation highlighted an advantage of SGOI NW with the lowest level of S/D region noise. Geometrical variations altered the CNF component with simple impact of device scaling (reciprocal to both Wtot and Lg). No large impact of surface orientation difference between the channel (100) top and (110) side-walls in [110]-oriented NWs was observed. Scaling regularity with both Wtot and Lg, without much quantum effect, could be attributed to the use of HfSiON/TiN gate and carrier transport occurring mostly near top and side-wall surfaces even in NW geometry. Meanwhile, the CMF factor was not altered by decreasing dimensions, while the mobility strongly depends on the impact. Extracted oxide trap density was roughly steady with scaling, structure, and technological parameter impacts. Simple separation method of the contributions between channel top surface and side-walls was demonstrated in order to evaluate the difference. It revealed that oxide quality on (100) top and (110) side-walls was roughly comparable in all the [110]-devices. The density values lie in similar order as the recent reports. An excellent quality of the interface with HfSiON/TiN gate was thus sustained for all our technological and geometrical splits. Finally, our NWs fulfilled 1/f LFN requirements stated in the ITRS 2013 for future MG CMOS logic node. Consequently, we concluded that appropriate strain technologies powerfully improve both carrier transport and LFN property for future CMOS circuits consisting of NW FETs, without any large concern about the interface quality.Dans cette thèse, les propriétés électriques de transistors à nanofils de silicium liées à l'interface oxyde de grille/canal ont été étudiées par le biais de mesures de bruit basse fréquence (bruit 1/f) et de transport dans le canal. Ces transistors nanofils dont les dimensions ont été réduites jusqu'à quelques nanomètres pour la section, représentent une alternative sérieuse pour les futurs nœuds technologiques CMOS. Cependant, la qualité de l'interface oxyde de grille/canal pose question pour transistors dont l'architecture s'étend dans les 3 dimensions, en raison du fort rapport surface/volume inhérent à ces transistors, des différentes orientations cristallographiques de ces interfaces, ou encore des matériaux contraints utilisés pour améliorer les performances électriques. La compréhension des liens entre les propriétés de transport des porteurs dans le canal, qui garantissent en grande partie les performances électriques des transistors, et la qualité de l'interface avec l'oxyde de grille est fond primordiale pour optimiser les transistors nanofils. Les mesures de bruit, associées à l'étude du transport dans le canal, sont un outil puissant et adapté à ces dispositifs tridimensionnels, sans être limité par la taille ultra-réduite des transistors nanofils. Les transistors nanofils étudiés ont été fabriqués à partir de substrats minces SOI, et intègrent un empilement de grille HfSiON/TiN, qui permet de réduire les dimensions tout en conservant les mêmes propriétés électrostatiques. Pour gagner en performances, des contraintes mécaniques ont été introduites dans le canal en silicium : en tension pour les NMOS, par le biais de substrat contraint (sSOI), et en compression pour les PMOS. Un canal en compression uni-axiale peut être obtenu par l'intégration de source/drain en SiGe et/ou par l'utilisation de couches contraintes de type CESL. Des transistors à canal SiGe sur isolant en compression ont également été fabriqués et étudiés. Les caractéristiques électriques des divers transistors nanofils (courbes Id-Vg, compromis Ion-Ioff, mobilité des porteurs) démontrent l'excellent contrôle électrostatique dû à l'architecture 3D, ainsi que l'efficacité de l'ingénierie de contraintes dans les nanofils jusqu'à de faibles longueurs de grilles (~17nm). Des mesures de bruit basse fréquence ont été réalisées sur ces mêmes dispositifs et analysées en fonction des paramètres géométriques de l'architecture nanofils (largeur W, forme de la section, longueur de grille L), et des diverses variantes technologiques. Nous avons démontré que le bruit 1/f dans les transistors nanofils peut être décrit par le modèle de fluctuations du nombre de porteurs (CNF) corrélées aux fluctuations de mobilité (CMF). Le bruit associé aux régions S/D a pu également être intégré dans ce modèle en ajoutant une contribution, en particulier pour les PMOS. Alors que les différentes variantes technologiques ont peu d'effet sur le bruit 1/f, les variations de géométrie en L et W changent la composante de bruit liée aux fluctuations du nombre de porteurs (CNF) de manière inversement proportionnelle à la surface totale (~1/WL). Cette augmentation du bruit est le reflet du transport qui se produit à proximité des interfaces avec l'oxyde. Les différentes orientations des interfaces supérieures et latérales (110) ou (100) présentent la même quantité de pièges d'interface (extrait à partir des mesures de bruit 1/f, en séparant les contributions des différentes faces du nanofil) bien qu'ayant une rugosité différente essentiellement liée au process. En revanche la composante CMF n'est pas altérée par la réduction des dimensions contrairement à la mobilité des porteurs qui décroit fortement avec L. Finalement, les mesures de bruit 1/f ont été comparées aux spécifications ITRS 2013 pour les transistors multi-grilles en vue des futurs nœuds technologiques de la logique CMOS, et démontrent que nos transistors nanofils satisfont les exigences en la matière

    Addressing performance bottlenecks for top-down engineered nanowire transistors

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore