1,262 research outputs found

    Pterodactyl: The Development and Performance of Guidance Algorithms for a Mechanically Deployed Entry Vehicle

    Get PDF
    Pterodactyl is a NASA Space Technology Mission Directorate (STMD) project focused on developing a design capability for optimal, scalable, Guidance and Control (G&C) solutions that enable precision targeting for Deployable Entry Vehicles (DEVs). This feasibility study is unique in that it focuses on the rapid integration of targeting performance analysis with structural & packaging analysis, which is especially challenging for new vehicle and mission designs. This paper will detail the guidance development and trajectory design process for a lunar return mission, selected to stress the vehicle designs and encourage future scalability. For the five G&C configurations considered, the Fully Numerical Predictor-Corrector Entry Guidance (FNPEG) was selected for configurations requiring bank angle guidance and FNPEG with Uncoupled Range Control (URC) was developed for configurations requiring angle of attack and sideslip angle guidance. Successful G&C configurations are defined as those that can deliver payloads to the intended descent and landing initiation point, while abiding by trajectory constraints for nominal and dispersed trajectories

    Fractional Calculus Guidance Algorithm in a Hypersonic Pursuit-Evasion Game

    Get PDF
    Aiming at intercepting a hypersonic weapon in a hypersonic pursuit-evasion game, this paper presents a fractional calculus guidance algorithm based on a nonlinear proportional and differential guidance law. First, under the premise of without increasing the complexity degree of the guidance system against a hypersonic manoeuvering target, the principle that the differential signal of the line-of-sight rate is more sensitive to the target manoeuver than the line-of-sight rate is employed as the guidelines to design the guidance law. A nonlinear proportional and differential guidance law (NPDG) is designed by using the differential derivative of the line-of-sight rate from a nonlinear tracking differentiator. By using the differential definition of fractional calculus, on the basis of the NPDG, a fractional calculus guidance law (FCG) is proposed. According to relative motions between the interceptor and target, the guidance system stability condition with the FCG is given and quantitative values are also proposed for the parameters of the FCG. Under different target manoeuver conditions and noisy conditions, the interception accuracy and robustness of these two guidance laws are analysed. Numerical experimental results demonstrate that the proposed guidance algorithms effectively reduce the miss distance against target manoeuvers. Compared with the NPDG, a stronger robustness of the FCG is shown under noisy condition

    Intelligent Autonomous Decision-Making and Cooperative Control Technology of High-Speed Vehicle Swarms

    Get PDF
    This book is a reprint of the Special Issue “Intelligent Autonomous Decision-Making and Cooperative Control Technology of High-Speed Vehicle Swarms”,which was published in Applied Sciences

    Robust Guidance Algorithm against Hypersonic Targets

    Get PDF
    This chapter presents a robust guidance algorithm for intercepting hypersonic targets. Since the differential of the line-of-sight rate is more sensitive to the target maneuver, a nonlinear proportional and differential guidance law (NPDG) is given by employing the differential of the line-of-sight rate produced by a nonlinear tracking differentiator. Based on the NPDG, a fractional calculus guidance law (FCG) is presented by utilizing the differential definition of fractional order. On the basis of interceptor-target relative motions, the stability criteria of the guidance system of the FCG are deduced. In different target maneuver and noisy cases, simulation results verify that the proposed guidance laws have small miss distances and the FCG has a stronger robustness

    Analysis of Hypersonic Vehicle Wakes

    Get PDF
    As advancements are made with ballistic missiles, particularly in the area of hypersonic bodies, there is a growing need to advance the methods of detecting these new ballistic weapons. As a result, the National Air and Space Intelligence Center has asked the Air Force Institute of Technology to examine the wake region behind hypersonic bodies. A thorough understanding of the aerothermal phenomena and the chemical reactions occurring in the wake region will enable an advancement of tracking hypersonic bodies. This research examined the wake region behind a hypersonic body using computational fluid dynamics. This study used Pointwise® to develop a three-dimensional grid of the flowfield around a conic hypersonic body and extending into the wake region. The Langley Aerothermodynamic Upwind Relaxation Algorithm was used to solve the flowfield, including the wake, and all surface properties. The results from the simulation were used to characterize the wake region behind the hypersonic body and compare that to the flowfield surrounding the body.Although no flight test data was available and no published results could be found in this area of interest, the results had good agreement with expected results. Along with that, several interesting phenomena were discovered dealing with the aerothermal environment and chemical species present in the wake that could lead to advancements in the efforts of tracking hypersonic bodies

    Guidance Law and Neural Control for Hypersonic Missile to Track Targets

    Get PDF
    Hypersonic technology plays an important role in prompt global strike. Because the flight dynamics of a hypersonic vehicle is nonlinear, uncertain, and highly coupled, the controller design is challenging, especially to design its guidance and control law during the attack of a maneuvering target. In this paper, the sliding mode control (SMC) method is used to develop the guidance law from which the desired flight path angle is derived. With the desired information as control command, the adaptive neural control in discrete time is investigated ingeniously for the longitudinal dynamics of the hypersonic missile. The proposed guidance and control laws are validated by simulation of a hypersonic missile against a maneuvering target. It is demonstrated that the scheme has good robustness and high accuracy to attack a maneuvering target in the presence of external disturbance and missile model uncertainty

    Aeronautical Engineering: A continuing bibliography, supplement 120

    Get PDF
    This bibliography contains abstracts for 297 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1980

    Application of a Near Infrared Imaging System for Thermographic Imaging of the Space Shuttle during Hypersonic Re-Entry

    Get PDF
    High resolution calibrated near infrared (NIR) imagery was obtained of the Space Shuttle s reentry during STS-119, STS-125, and STS-128 missions. The infrared imagery was collected using a US Navy NP-3D Orion aircraft using a long-range infrared optical package referred to as Cast Glance. The slant ranges between the Space Shuttle and Cast Glance were approximately 26-41 nautical miles at point of closest approach. The Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) project was a NASA Langley led endeavor sponsored by the NASA Engineering Safety Center, the Space Shuttle Program Office and the NASA Aeronautics Research Mission Directorate to demonstrate a quantitative thermal imaging capability. HYTHIRM required several mission tools to acquire the imagery. These tools include pre-mission acquisition simulations of the Shuttle trajectory in relationship to the Cast Glance aircraft flight path, radiance modeling to predict the infrared response of the Shuttle, and post mission analysis tools to process the infrared imagery to quantitative temperature maps. The spatially resolved global thermal measurements made during the Shuttle s hypersonic reentry provides valuable flight data for reducing the uncertainty associated with present day ground-to-flight extrapolation techniques and current state-of-the-art empirical boundary-layer transition or turbulent heating prediction methods. Laminar and turbulent flight data is considered critical for the development of turbulence models supporting NASA s next-generation spacecraft. This paper will provide the motivation and details behind the use of an upgraded NIR imaging system used onboard a Navy Cast Glance aircraft and describe the characterizations and procedures performed to obtain quantitative temperature maps. A brief description and assessment will be provided of the previously used analog NIR camera along with image examples from Shuttle missions STS-121, STS-115, and solar tower test. These thermal observations confirmed the challenge of a long-range acquisition during re-entry. These challenges are due to unknown atmospheric conditions, image saturation, vibration etc. This provides the motivation for the use of a digital NIR sensor. The characterizations performed on the digital NIR sensor included radiometric, spatial, and spectral measurements using blackbody radiation sources and known targets. An assessment of the collected data for three Space Shuttle atmospheric re-entries, STS-119, STS-125, and STS-128, are provided along with a description of various events of interest captured using the digital NIR imaging system such as RCS firings and boundary layer transitions. Lastly the process used to convert the raw image counts to quantitative temperatures is presented along with comparisons to the Space Shuttle's onboard thermocouples

    DRONE DELIVERY OF CBNRECy – DEW WEAPONS Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD)

    Get PDF
    Drone Delivery of CBNRECy – DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD) is our sixth textbook in a series covering the world of UASs and UUVs. Our textbook takes on a whole new purview for UAS / CUAS/ UUV (drones) – how they can be used to deploy Weapons of Mass Destruction and Deception against CBRNE and civilian targets of opportunity. We are concerned with the future use of these inexpensive devices and their availability to maleficent actors. Our work suggests that UASs in air and underwater UUVs will be the future of military and civilian terrorist operations. UAS / UUVs can deliver a huge punch for a low investment and minimize human casualties.https://newprairiepress.org/ebooks/1046/thumbnail.jp

    Deep Reinforcement Learning for Weapons to Targets Assignment in a Hypersonic strike

    Full text link
    We use deep reinforcement learning (RL) to optimize a weapons to target assignment (WTA) policy for multi-vehicle hypersonic strike against multiple targets. The objective is to maximize the total value of destroyed targets in each episode. Each randomly generated episode varies the number and initial conditions of the hypersonic strike weapons (HSW) and targets, the value distribution of the targets, and the probability of a HSW being intercepted. We compare the performance of this WTA policy to that of a benchmark WTA policy derived using non-linear integer programming (NLIP), and find that the RL WTA policy gives near optimal performance with a 1000X speedup in computation time, allowing real time operation that facilitates autonomous decision making in the mission end game
    • …
    corecore