305 research outputs found

    ID-based Ring Signature and Proxy Ring Signature Schemes from Bilinear Pairings

    Get PDF
    In 2001, Rivest et al. firstly introduced the concept of ring signatures. A ring signature is a simplified group signature without any manager. It protects the anonymity of a signer. The first scheme proposed by Rivest et al. was based on RSA cryptosystem and certificate based public key setting. The first ring signature scheme based on DLP was proposed by Abe, Ohkubo, and Suzuki. Their scheme is also based on the general certificate-based public key setting too. In 2002, Zhang and Kim proposed a new ID-based ring signature scheme using pairings. Later Lin and Wu proposed a more efficient ID-based ring signature scheme. Both these schemes have some inconsistency in computational aspect. In this paper we propose a new ID-based ring signature scheme and a proxy ring signature scheme. Both the schemes are more efficient than existing one. These schemes also take care of the inconsistencies in above two schemes.Comment: Published with ePrint Archiv

    Secure Mobile Agents in Electronic Commerce by Using Undetachable Signatures from Pairings

    Get PDF
    It is expect that mobile agents technology will bring significant benefits to electronic commerce. But security issues, especially threats from malicious hosts, become a great obstacle of widespread deployment of applications in electronic commerce based on mobile agents technology. Undetachable digital signature is a category of digital signatures to secure mobile agents against malicious hosts. An undetachable signature scheme by using encrypted functions from bilinear pairings was proposed in this paper. The security of this scheme base on the computational intractability of discrete logarithm problem and computational Diffe-Hellman problem on gap Diffle-Hellman group. Furthermore, the scheme satisfies all the requirements of a strong non-designated proxy signature i.e. verifiability, strong unforgeability, strong identifiability, strong undeniability and preventions of misuse. An undetachable threshold signature scheme that enable the customer to provide n mobile agents with ‘shares’ of the undetachable signature function is also provided. It is able to provide more reliability than classical undetachable signatures

    ID-based, proxy, threshold signature scheme

    Get PDF
    We propose the proxy threshold signature scheme with the application of elegant construction of verifiable delegating key in the ID-based infrastructure, and also with the bilinear pairings. The protocol satisfies the classical security requirements used in the proxy delegation of signing rights. The description of the system architecture and the possible application of the protocol in edge computing designs is enclosed

    A Novel Identity Based Blind Signature Scheme using DLP for E-Commerce

    Get PDF
    Abstract— Blind signatures are used in the most of the application where confidentiality and authenticity are the main issue. Blind signature scheme deals with concept where requester sends the request that the signer should sign on a blind message without looking at the content. Many ID based blind signature are proposed using bilinear pairings and elliptic curve. But the relative computation cost of the pairing in bilinear pairings and ID map into an elliptic curve are huge. In order to save the running time and the size of the signature, this paper proposed a scheme having the property of both concepts identity based blind signature that is based on Discrete Logarithm Problem, so as we know that DLP is a computational hard problem and hence the proposed scheme achieves all essential and secondary security prematurity. With the help of the proposed scheme, this paper implemented an E-commerce system in a secure way. E-commerce is one of the most concern applications of ID based blind signature scheme. E-commerce consisting selling and buying of products or services over the internet and open network. ID based blind signature scheme basically has been used enormously as a part of today’s focussed business. Our proposed scheme can be also be used in E-business, E-voting and E-cashing anywhere without any restriction DOI: 10.17762/ijritcc2321-8169.15060

    Towards an auditable cryptographic access control to high-value sensitive data

    Get PDF
    We discuss the challenge of achieving an auditable key management for cryptographic access control to high-value sensitive data. In such settings it is important to be able to audit the key management process - and in particular to be able to provide verifiable proofs of key generation. The auditable key management has several possible use cases in both civilian and military world. In particular, the new regulations for protection of sensitive personal data, such as GDPR, introduce strict requirements for handling of personal data and apply a very restrictive definition of what can be considered a personal data. Cryptographic access control for personal data has a potential to become extremely important for preserving industrial ability to innovate, while protecting subject's privacy, especially in the context of widely deployed modern monitoring, tracking and profiling capabilities, that are used by both governmental institutions and high-tech companies. However, in general, an encrypted data is still considered as personal under GDPR and therefore cannot be, e.g., stored or processed in a public cloud or distributed ledger. In our work we propose an identity-based cryptographic framework that ensures confidentiality, availability, integrity of data while potentially remaining compliant with the GDPR framework

    Group Selection and Key Management Strategies for Ciphertext-Policy Attribute-Based Encryption

    Get PDF
    Ciphertext-Policy Attribute-Based Encryption (CPABE) was introduced by Bethencourt, Sahai, and Waters, as an improvement of Identity Based Encryption, allowing fine grained control of access to encrypted files by restricting access to only users whose attributes match that of the monotonic access tree of the encrypted file. Through these modifications, encrypted files can be placed securely on an unsecure server, without fear of malicious users being able to access the files, while allowing each user to have a unique key, reducing the vulnerabilites associated with sharing a key between multiple users. However, due to the fact that CPABE was designed for the purpose of not using trusted servers, key management strategies such as efficient renewal and immediate key revocation are inherently prevented. In turn, this reduces security of the entire scheme, as a user could maliciously keep a key after having an attribute changed or revoked, using the old key to decrypt files that they should not have access to with their new key. Additionally, the original CPABE implementation provided does not discuss the selection of the underlying bilinear pairing which is used as the cryptographic primitive for the scheme. This thesis explores different possibilites for improvement to CPABE, in both the choice of bilinear group used, as well as support for key management that does not rely on proxy servers while minimizing the communication overhead. Through this work, it was found that nonsupersingular elliptic curves can be used for CPABE, and Barreto-Naehrig curves allowed the fastest encryption and key generation in CHARM, but were the slowest curves for decryption due to the large size of the output group. Key management was performed by using a key-insulation method, which provided helper keys which allow keys to be transformed over different time periods, with revocation and renewal through key update. Unfortunately, this does not allow immediate revocation, and revoked keys are still valid until the end of the time period during which they are revoked. Discussion of other key management methods is presented to show that immediate key revocation is difficult without using trusted servers to control access
    • …
    corecore