5,847 research outputs found

    Matching-CNN Meets KNN: Quasi-Parametric Human Parsing

    Full text link
    Both parametric and non-parametric approaches have demonstrated encouraging performances in the human parsing task, namely segmenting a human image into several semantic regions (e.g., hat, bag, left arm, face). In this work, we aim to develop a new solution with the advantages of both methodologies, namely supervision from annotated data and the flexibility to use newly annotated (possibly uncommon) images, and present a quasi-parametric human parsing model. Under the classic K Nearest Neighbor (KNN)-based nonparametric framework, the parametric Matching Convolutional Neural Network (M-CNN) is proposed to predict the matching confidence and displacements of the best matched region in the testing image for a particular semantic region in one KNN image. Given a testing image, we first retrieve its KNN images from the annotated/manually-parsed human image corpus. Then each semantic region in each KNN image is matched with confidence to the testing image using M-CNN, and the matched regions from all KNN images are further fused, followed by a superpixel smoothing procedure to obtain the ultimate human parsing result. The M-CNN differs from the classic CNN in that the tailored cross image matching filters are introduced to characterize the matching between the testing image and the semantic region of a KNN image. The cross image matching filters are defined at different convolutional layers, each aiming to capture a particular range of displacements. Comprehensive evaluations over a large dataset with 7,700 annotated human images well demonstrate the significant performance gain from the quasi-parametric model over the state-of-the-arts, for the human parsing task.Comment: This manuscript is the accepted version for CVPR 201

    Interaction between high-level and low-level image analysis for semantic video object extraction

    Get PDF
    Authors of articles published in EURASIP Journal on Advances in Signal Processing are the copyright holders of their articles and have granted to any third party, in advance and in perpetuity, the right to use, reproduce or disseminate the article, according to the SpringerOpen copyright and license agreement (http://www.springeropen.com/authors/license)

    TopologyNet: Topology based deep convolutional neural networks for biomolecular property predictions

    Full text link
    Although deep learning approaches have had tremendous success in image, video and audio processing, computer vision, and speech recognition, their applications to three-dimensional (3D) biomolecular structural data sets have been hindered by the entangled geometric complexity and biological complexity. We introduce topology, i.e., element specific persistent homology (ESPH), to untangle geometric complexity and biological complexity. ESPH represents 3D complex geometry by one-dimensional (1D) topological invariants and retains crucial biological information via a multichannel image representation. It is able to reveal hidden structure-function relationships in biomolecules. We further integrate ESPH and convolutional neural networks to construct a multichannel topological neural network (TopologyNet) for the predictions of protein-ligand binding affinities and protein stability changes upon mutation. To overcome the limitations to deep learning arising from small and noisy training sets, we present a multitask topological convolutional neural network (MT-TCNN). We demonstrate that the present TopologyNet architectures outperform other state-of-the-art methods in the predictions of protein-ligand binding affinities, globular protein mutation impacts, and membrane protein mutation impacts.Comment: 20 pages, 8 figures, 5 table

    Functional and structural MRI image analysis for brain glial tumors treatment

    Get PDF
    This Ph.D Thesis is the outcome of a close collaboration between the Center for Research in Image Analysis and Medical Informatics (CRAIIM) of the Insubria University and the Operative Unit of Neurosurgery, Neuroradiology and Health Physics of the University Hospital ”Circolo Fondazione Macchi”, Varese. The project aim is to investigate new methodologies by means of whose, develop an integrated framework able to enhance the use of Magnetic Resonance Images, in order to support clinical experts in the treatment of patients with brain Glial tumor. Both the most common uses of MRI technology for non-invasive brain inspection were analyzed. From the Functional point of view, the goal has been to provide tools for an objective reliable and non-presumptive assessment of the brain’s areas locations, to preserve them as much as possible at surgery. From the Structural point of view, methodologies for fully automatic brain segmentation and recognition of the tumoral areas, for evaluating the tumor volume, the spatial distribution and to be able to infer correlation with other clinical data or trace growth trend, have been studied. Each of the proposed methods has been thoroughly assessed both qualitatively and quantitatively. All the Medical Imaging and Pattern Recognition algorithmic solutions studied for this Ph.D. Thesis have been integrated in GliCInE: Glioma Computerized Inspection Environment, which is a MATLAB prototype of an integrated analysis environment that offers, in addition to all the functionality specifically described in this Thesis, a set of tools needed to manage Functional and Structural Magnetic Resonance Volumes and ancillary data related to the acquisition and the patient
    corecore