11,590 research outputs found

    Fast Generation of Random Spanning Trees and the Effective Resistance Metric

    Full text link
    We present a new algorithm for generating a uniformly random spanning tree in an undirected graph. Our algorithm samples such a tree in expected O~(m4/3)\tilde{O}(m^{4/3}) time. This improves over the best previously known bound of min(O~(mn),O(nω))\min(\tilde{O}(m\sqrt{n}),O(n^{\omega})) -- that follows from the work of Kelner and M\k{a}dry [FOCS'09] and of Colbourn et al. [J. Algorithms'96] -- whenever the input graph is sufficiently sparse. At a high level, our result stems from carefully exploiting the interplay of random spanning trees, random walks, and the notion of effective resistance, as well as from devising a way to algorithmically relate these concepts to the combinatorial structure of the graph. This involves, in particular, establishing a new connection between the effective resistance metric and the cut structure of the underlying graph

    Bicriteria Network Design Problems

    Full text link
    We study a general class of bicriteria network design problems. A generic problem in this class is as follows: Given an undirected graph and two minimization objectives (under different cost functions), with a budget specified on the first, find a <subgraph \from a given subgraph-class that minimizes the second objective subject to the budget on the first. We consider three different criteria - the total edge cost, the diameter and the maximum degree of the network. Here, we present the first polynomial-time approximation algorithms for a large class of bicriteria network design problems for the above mentioned criteria. The following general types of results are presented. First, we develop a framework for bicriteria problems and their approximations. Second, when the two criteria are the same %(note that the cost functions continue to be different) we present a ``black box'' parametric search technique. This black box takes in as input an (approximation) algorithm for the unicriterion situation and generates an approximation algorithm for the bicriteria case with only a constant factor loss in the performance guarantee. Third, when the two criteria are the diameter and the total edge costs we use a cluster-based approach to devise a approximation algorithms --- the solutions output violate both the criteria by a logarithmic factor. Finally, for the class of treewidth-bounded graphs, we provide pseudopolynomial-time algorithms for a number of bicriteria problems using dynamic programming. We show how these pseudopolynomial-time algorithms can be converted to fully polynomial-time approximation schemes using a scaling technique.Comment: 24 pages 1 figur

    Symbolic analysis of large analog integrated circuits by approximation during expression generation

    Get PDF
    A novel algorithm is presented that generates approximate symbolic expressions for small-signal characteristics of large analog integrated circuits. The method is based upon the approximation of an expression while it is being computed. The CPU time and memory requirements are reduced drastically with regard to previous approaches, as only those terms are calculated which will remain in the final expression. As a consequence, the maximum circuit size amenable to symbolic analysis has largely increased. The simplification procedure explicitly takes into account variation ranges of the symbolic parameters to avoid inaccuracies of conventional approaches which use a single value. The new approach is also able to take into account mismatches between the symbolic parameters

    On some intriguing problems in Hamiltonian graph theory -- A survey

    Get PDF
    We survey results and open problems in Hamiltonian graph theory centred around three themes: regular graphs, tt-tough graphs, and claw-free graphs

    Comparison of matroid intersection algorithms for large circuit analysis

    Get PDF
    This paper presents two approaches to symbolic analysis of large analog integrated circuits via simplification during the generation of the symbolic expressions. Both techniques are examined from the point of view of matroid theory. Finally, a new approach which combines the positive features of both approaches is introduced

    Efficient symbolic computation of approximated small-signal characteristics of analog integrated circuits

    Get PDF
    A symbolic analysis tool is presented that generates simplified symbolic expressions for the small-signal characteristics of large analog integrated circuits. The expressions are approximated while they are computed, so that only those terms are generated which remain in the final expression. This principle causes drastic savings in CPU time and memory, compared with previous symbolic analysis tools. In this way, the maximum size of circuits that can be analyzed, is largely increased. By taking into account a range for the value of a circuit parameter rather than one single number, the generated expressions are also more generally valid. Mismatch handling is explicitly taken into account in the algorithm. The capabilities of the new tool are illustrated with several experimental result

    Algorithm for efficient symbolic analysis of large analogue circuits

    Get PDF
    An algorithm is presented that generates simplified symbolic expressions for the small-signal characteristics of large analogue circuits. The expressions are approximated while they are computed, so that only the most significant terms are generated which remain in the final expression. This principle leads to dramatic savings in CPU time and memory compared to existing techniques, significantly increasing the maximum size of circuits that can be analysed. By taking into account a range for the value of a circuit parameter rather than one single number the generated symbolic expressions are also generally valid
    corecore