2,884 research outputs found

    Agonistic behavior of captive saltwater crocodile, crocodylus porosus in Kota Tinggi, Johor

    Get PDF
    Agonistic behavior in Crocodylus porosus is well known in the wild, but the available data regarding this behavior among the captive individuals especially in a farm setting is rather limited. Studying the aggressive behavior of C. porosus in captivity is important because the data obtained may contribute for conservation and the safety for handlers and visitors. Thus, this study focuses on C. porosus in captivity to describe systematically the agonistic behaviour of C. porosus in relation to feeding time, daytime or night and density per pool. This study was carried out for 35 days in two different ponds. The data was analysed using Pearson’s chi-square analysis to see the relationship between categorical factors. The study shows that C. porosus was more aggressive during daylight, feeding time and non-feeding time in breeding enclosure (Pond C, stock density =0.0369 crocodiles/m2) as compared to non-breeding pond (Pond B, stock density =0.3317 crocodiles/m2) where it is only aggressive during the nighttime. Pond C shows the higher domination in the value of aggression in feeding and non-feeding time where it is related to its function as breeding ground. Chi-square analysis shows that there is no significant difference between ponds (p=0.47, χ2= 2.541, df= 3), thus, there is no relationship between categorical factors. The aggressive behaviour of C. porosus is important for the farm management to evaluate the risk in future for the translocation process and conservation of C. porosus generally

    Dynamic S-BOX using Chaotic Map for VPN Data Security

    Full text link
    A dynamic SBox using a chaotic map is a cryptography technique that changes the SBox during encryption based on iterations of a chaotic map, adding an extra layer of confusion and security to symmetric encryption algorithms like AES. The chaotic map introduces unpredictability, non-linearity, and key dependency, enhancing the overall security of the encryption process. The existing work on dynamic SBox using chaotic maps lacks standardized guidelines and extensive security analysis, leaving potential vulnerabilities and performance concerns unaddressed. Key management and the sensitivity of chaotic maps to initial conditions are challenges that need careful consideration. The main objective of using a dynamic SBox with a chaotic map in cryptography systems is to enhance the security and robustness of symmetric encryption algorithms. The method of dynamic SBox using a chaotic map involves initializing the SBox, selecting a chaotic map, iterating the map to generate chaotic values, and updating the SBox based on these values during the encryption process to enhance security and resist cryptanalytic attacks. This article proposes a novel chaotic map that can be utilized to create a fresh, lively SBox. The performance assessment of the suggested S resilience Box against various attacks involves metrics such as nonlinearity (NL), strict avalanche criterion (SAC), bit independence criterion (BIC), linear approximation probability (LP), and differential approximation probability (DP). These metrics help gauge the Box ability to handle and respond to different attack scenarios. Assess the cryptography strength of the proposed S-Box for usage in practical security applications, it is compared to other recently developed SBoxes. The comparative research shows that the suggested SBox has the potential to be an important advancement in the field of data security.Comment: 11 Page

    Design and Analysis of New Shuffle Encryption Schemes for Multimedia

    Get PDF
    Securing the contents of visual data and multimedia requires specific design consideration for use in different applications. The major issue with this type of data has been occurrence of redundancy, at various places particularly in images, which makes data values repetitive at several places. The focus of this paper is on design of new shuffling schemes that can efficiently destroy redundancy in the visual data ensuring its secured transmission and distribution over public networks. Different variants of these shuffling schemes will be used as pre-processing schemes on multimedia data values especially in light weight devices using images. Standard as well as chaotic permutation and substitution schemes together with S-box rotation have been used to shuffle and map the plain data into random uncorrelated values via various variants of the presented schemes. For further improving the security, the processed data is encrypted using a computationally fast algorithm in its normal mode of operation. Security analysis using different types of images show that the proposed schemes satisfy the parameters required for securing visual contents even with very high redundancy.Defence Science Journal, 2012, 62(1), pp.159-166, DOI:http://dx.doi.org/10.14429/dsj.62.100
    • …
    corecore