9,974 research outputs found

    Power meter for Highly-Distorted Three-Phase Systems

    Get PDF
    This paper describes a low-cost, three-phase power meter, which is based on a fast, specially designed acquisition board coupled to a PC via the PC parallel/printer port or by means of an AT card. The power associated with the fundamental and first harmonics is computed by software that operates in the time domain and employs a sample-weighting procedure that makes the uncertainty related to the asynchronous sampling negligible. The low-cost acquisition board features two 8-bit 1 MHz converters and a local RAM, which decouples the PC clock from the measurement requirements. Hall effect transducers are used for the current channels and fast differential amplifiers for the voltage channels. The fast sampling frequency allows simple antialiasing filters to be employed. Digital filtering is used to reduce the sample number while increasing the resolution. The power uncertainty provided by this arrangement is less then 0.1 % with 2.5 measurements per second when a low-cost 486DX33-based PC is use

    A Multiproject Chip Approach to the Teaching of Analog MOS LSI and VLSI

    Get PDF
    Multiproject chip implementation has been used in teaching analog MOS circuit design. After having worked with computer simulation and layout aids in homework problems, students designed novel circuits including several high performance op amps, an A/D converter, a switched capacitor filter, a 1 K dynamic RAM, and a variety of less conventional MOS circuits such as a VII converter, an AC/DC converter, an AM radio receiver, a digitally-controlled analog signal processor, and on-chip circuitry for measuring transistor capacitances. These circuits were laid out as part of an NMOS multiproject chip. Several of the designs exhibit a considerable degree of innovation; fabrication pending, computer simulation shows that some may be pushing the state of the art. Several designs are of interest to digital designers; in fact, the course has provided knowledge and technique needed for detailed digital circuit design at the gate level

    Analog/RF Circuit Design Techniques for Nanometerscale IC Technologies

    Get PDF
    CMOS evolution introduces several problems in analog design. Gate-leakage mismatch exceeds conventional matching tolerances requiring active cancellation techniques or alternative architectures. One strategy to deal with the use of lower supply voltages is to operate critical parts at higher supply voltages, by exploiting combinations of thin- and thick-oxide transistors. Alternatively, low voltage circuit techniques are successfully developed. In order to benefit from nanometer scale CMOS technology, more functionality is shifted to the digital domain, including parts of the RF circuits. At the same time, analog control for digital and digital control for analog emerges to deal with current and upcoming imperfections

    Analog Circuits in Ultra-Deep-Submicron CMOS

    Get PDF
    Modern and future ultra-deep-submicron (UDSM) technologies introduce several new problems in analog design. Nonlinear output conductance in combination with reduced voltage gain pose limits in linearity of (feedback) circuits. Gate-leakage mismatch exceeds conventional matching tolerances. Increasing area does not improve matching any more, except if higher power consumption is accepted or if active cancellation techniques are used. Another issue is the drop in supply voltages. Operating critical parts at higher supply voltages by exploiting combinations of thin- and thick-oxide transistors can solve this problem. Composite transistors are presented to solve this problem in a practical way. Practical rules of thumb based on measurements are derived for the above phenomena

    14-bit 2.2-MS/s sigma-delta ADC's

    Get PDF

    Dispersive Fourier Transformation for Versatile Microwave Photonics Applications

    Get PDF
    Abstract: Dispersive Fourier transformation (DFT) maps the broadband spectrum of an ultrashort optical pulse into a time stretched waveform with its intensity profile mirroring the spectrum using chromatic dispersion. Owing to its capability of continuous pulse-by-pulse spectroscopic measurement and manipulation, DFT has become an emerging technique for ultrafast signal generation and processing, and high-throughput real-time measurements, where the speed of traditional optical instruments falls short. In this paper, the principle and implementation methods of DFT are first introduced and the recent development in employing DFT technique for widespread microwave photonics applications are presented, with emphasis on real-time spectroscopy, microwave arbitrary waveform generation, and microwave spectrum sensing. Finally, possible future research directions for DFT-based microwave photonics techniques are discussed as well

    System Identification, Diagnosis, and Built-In Self-Test of High Switching Frequency DC-DC Converters

    Get PDF
    abstract: Complex electronic systems include multiple power domains and drastically varying dynamic power consumption patterns, requiring the use of multiple power conversion and regulation units. High frequency switching converters have been gaining prominence in the DC-DC converter market due to smaller solution size (higher power density) and higher efficiency. As the filter components become smaller in value and size, they are unfortunately also subject to higher process variations and worse degradation profiles jeopardizing stable operation of the power supply. This dissertation presents techniques to track changes in the dynamic loop characteristics of the DC-DC converters without disturbing the normal mode of operation. A digital pseudo-noise (PN) based stimulus is used to excite the DC-DC system at various circuit nodes to calculate the corresponding closed-loop impulse response. The test signal energy is spread over a wide bandwidth and the signal analysis is achieved by correlating the PN input sequence with the disturbed output generated, thereby accumulating the desired behavior over time. A mixed-signal cross-correlation circuit is used to derive on-chip impulse responses, with smaller memory and lower computational requirement in comparison to a digital correlator approach. Model reference based parametric and non-parametric techniques are discussed to analyze the impulse response results in both time and frequency domain. The proposed techniques can extract open-loop phase margin and closed-loop unity-gain frequency within 5.2% and 4.1% error, respectively, for the load current range of 30-200mA. Converter parameters such as natural frequency (ω_n ), quality factor (Q), and center frequency (ω_c ) can be estimated within 3.6%, 4.7%, and 3.8% error respectively, over load inductance of 4.7-10.3µH, and filter capacitance of 200-400nF. A 5-MHz switching frequency, 5-8.125V input voltage range, voltage-mode controlled DC-DC buck converter is designed for the proposed built-in self-test (BIST) analysis. The converter output voltage range is 3.3-5V and the supported maximum load current is 450mA. The peak efficiency of the converter is 87.93%. The proposed converter is fabricated on a 0.6µm 6-layer-metal Silicon-On-Insulator (SOI) technology with a die area of 9mm^2 . The area impact due to the system identification blocks including related I/O structures is 3.8% and they consume 530µA quiescent current during operation.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201
    corecore