4,104 research outputs found

    iDNA from terrestrial haematophagous leeches as a wildlife surveying and monitoring tool - prospects, pitfalls and avenues to be developed

    Get PDF
    Invertebrate-derived DNA (iDNA) from terrestrial haematophagous leeches has recently been proposed as a powerful non-invasive tool with which to detect vertebrate species and thus to survey their populations. However, to date little attention has been given to whether and how this, or indeed any other iDNA-derived data, can be combined with state-of-the-art analytical tools to estimate wildlife abundances, population dynamics and distributions. In this review, we discuss the challenges that face the application of existing analytical methods such as site-occupancy and spatial capture-recapture (SCR) models to terrestrial leech iDNA, in particular, possible violations of key assumptions arising from factors intrinsic to invertebrate parasite biology. Specifically, we review the advantages and disadvantages of terrestrial leeches as a source of iDNA and summarize the utility of leeches for presence, occupancy, and spatial capture-recapture models. The main source of uncertainty that attends species detections derived from leech gut contents is attributable to uncertainty about the spatio-temporal sampling frame, since leeches retain host-blood for months and can move after feeding. Subsequently, we briefly address how the analytical challenges associated with leeches may apply to other sources of iDNA. Our review highlights that despite the considerable potential of leech (and indeed any) iDNA as a new survey tool, further pilot studies are needed to assess how analytical methods can overcome or not the potential biases and assumption violations of the new field of iDNA. Specifically we argue that studies to compare iDNA sampling with standard survey methods such as camera trapping, and those to improve our knowledge on leech (and other invertebrate parasite) physiology, taxonomy, and ecology will be of immense future value

    Species misidentification in ecological studies : incidence and importance from the ecologists’ point of view

    Get PDF
    Natural scientists study a wide variety of species, but whether they have identified all studied samples correctly to species is rarely evaluated. Species misidentification in empirical research can cause significant losses of money, information, and time, and contribute to false results. Thus, I study the abundance of species misidentification and ecologists’ perceptions of such mistakes through a web survey targeting researchers from scientific institutes around the globe (including universities, research societies and museums) who completed their doctoral degree in any ecology-related field of science. I received 117 responses with either work or educational background from 30 countries. I found that species misidentification widely existed in respondents’ research: almost 70% of the respondents noticed species misidentification in their own research, while the estimated proportion of existing studies with species misidentification was 34% (95% CI: 28% - 40%). Although misidentification was mainly found during specimen collection, specimen handling and data analysis, misidentifications in reporting stages (writing, revision and after publishing) could persist until publication. Moreover, according to respondents, reviewers seldom comment about species identification methods or their accuracy, which may affect respondents’ (both leading and not leading a research team) low reporting frequency about the possibility of misidentification. Expert checking, training students, and DNA barcoding are the most prevalent approaches to ensure identification accuracy among respondents. My results imply that species misidentification might be widespread in existing ecological research. Although the problem of species misidentification is widely recognized, such an issue seldom be appropriately handled by respondents. To increase the accuracy of species identification and maintain academic integrity, I suggest that researchers need to focus more on the study species (e.g., sampling process, identification method, and accuracy) when writing and reviewing papers. Furthermore, I appeal for guidelines about reporting species identification methods and their accuracy in papers, as well as research on education about identification skills in universities, as these two topics may constrain the precision of species identification

    Highlights of the SLD Physics Program at the SLAC Linear Collider

    Get PDF
    Starting in 1989, and continuing through the 1990s, high-energy physics witnessed a flowering of precision measurements in general and tests of the standard model in particular, led by e+e- collider experiments operating at the Z0 resonance. Key contributions to this work came from the SLD collaboration at the SLAC Linear Collider. By exploiting the unique capabilities of this pioneering accelerator and the SLD detector, including a polarized electron beam, exceptionally small beam dimensions, and a CCD pixel vertex detector, SLD produced a broad array of electroweak, heavy-flavor, and QCD measurements. Many of these results are one of a kind or represent the world's standard in precision. This article reviews the highlights of the SLD physics program, with an eye toward associated advances in experimental technique, and the contribution of these measurements to our dramatically improved present understanding of the standard model and its possible extensions.Comment: To appear in 2001 Annual Review of Nuclear and Particle Science; 78 pages, 31 figures; A version with higher resolution figures can be seen at http://www.slac.stanford.edu/pubs/slacpubs/8000/slac-pub-8985.html; Second version incorporates minor changes to the tex

    The political economy of global environmental governance

    Get PDF
    This article develops a political economy account of global environmental governance to improve upon our understanding of the contemporary conduct of environmental politics and to clarify thinking about the potential for, and barriers to, effective environmental reform. By elaborating the key contours of a political economy account on the one hand and opening up to critical enquiry prevailing understandings of what is meant by ‘global’ ‘environmental’ and ‘governance’ on the other, such an approach is able to enhance our understanding of the practice of environmental governance by emphasising historical, material and political elements of its (re) constitution and evolution

    Insights into the regulation of intrinsically disordered proteins in the human proteome by analyzing sequence and gene expression data

    Get PDF
    Background: Disordered proteins need to be expressed to carry out specified functions; however, their accumulation in the cell can potentially cause major problems through protein misfolding and aggregation. Gene expression levels, mRNA decay rates, microRNA (miRNA) targeting and ubiquitination have critical roles in the degradation and disposal of human proteins and transcripts. Here, we describe a study examining these features to gain insights into the regulation of disordered proteins. Results: In comparison with ordered proteins, disordered proteins have a greater proportion of predicted ubiquitination sites. The transcripts encoding disordered proteins also have higher proportions of predicted miRNA target sites and higher mRNA decay rates, both of which are indicative of the observed lower gene expression levels. The results suggest that the disordered proteins and their transcripts are present in the cell at low levels and/or for a short time before being targeted for disposal. Surprisingly, we find that for a significant proportion of highly disordered proteins, all four of these trends are reversed. Predicted estimates for miRNA targets, ubiquitination and mRNA decay rate are low in the highly disordered proteins that are constitutively and/or highly expressed. Conclusions: Mechanisms are in place to protect the cell from these potentially dangerous proteins. The evidence suggests that the enrichment of signals for miRNA targeting and ubiquitination may help prevent the accumulation of disordered proteins in the cell. Our data also provide evidence for a mechanism by which a significant proportion of highly disordered proteins (with high expression levels) can escape rapid degradation to allow them to successfully carry out their function

    Mesoscale mapping of sediment source hotspots for dam sediment management in data-sparse semi-arid catchments

    Get PDF
    Land degradation and water availability in semi-arid regions are interdependent challenges for management that are influenced by climatic and anthropogenic changes. Erosion and high sediment loads in rivers cause reservoir siltation and decrease storage capacity, which pose risk on water security for citizens, agriculture, and industry. In regions where resources for management are limited, identifying spatial-temporal variability of sediment sources is crucial to decrease siltation. Despite widespread availability of rigorous methods, approaches simplifying spatial and temporal variability of erosion are often inappropriately applied to very data sparse semi-arid regions. In this work, we review existing approaches for mapping erosional hotspots, and provide an example of spatial-temporal mapping approach in two case study regions. The barriers limiting data availability and their effects on erosion mapping methods, their validation, and resulting prioritization of leverage management areas are discussed.BMBF, 02WGR1421A-I, GROW - Verbundprojekt SaWaM: Saisonales Wasserressourcen-Management in Trockenregionen: Praxistransfer regionalisierter globaler Informationen, Teilprojekt 1DFG, 414044773, Open Access Publizieren 2019 - 2020 / Technische Universität Berli

    Development of novel gearbox lubrication condition monitoring sensors in the context of wind turbine gearboxes

    Get PDF
    Wind power has become established as an alternative power source that forms a significant proportion of national energy generation. An increasing proportion of turbines is being constructed offshore to exploit higher average wind speeds and to avoid development issues associated with onshore wind farms. Isolated locations and unpredictable weather conditions lead to increased access costs for operators when conducting scheduled and unscheduled maintenance and repairs. This has increased interest in condition monitoring systems which can track the current state of components within a wind turbine and provide operators with predicted future trends. Asset management can be improved through condition based maintenance regimes and preventative repairs. Development of novel condition monitoring systems that can accurately predict incipient damage can optimise operational performance and reduce the overall level of wind turbine generation costs. The work described in this thesis presents the development of novel sensors that may be applied to monitor wind turbine gearboxes, a component that experiences relatively high failure rates and causes considerable turbine downtime. Current systems and technology that may be adapted for use in wind turbine condition monitoring are evaluated. Lubrication related monitoring systems have been identified as an area that could be improved and are divided into those that track liberated wear material suspended in the lubricant and those that assess the state of the lubricant itself. This study presents two novel lubrication based gearbox monitoring sensors that potentially offer a low cost solution for continuous data capture. The first demonstrates the potential for active pixel sensors such as those found in digital cameras to capture images of wear particles within gearbox lubricants. Particle morphology was tracked in this system, allowing the type of particles to be correlated with the type of wear that is generated and a potential source. The second sensor uses a targeted form of infra-red absorption spectroscopy to track changes in the lubricant chemistry due to the increase in acidity. Ensuring the lubricant is functioning correctly decreases component stress and fatigue, reducing maintenance requirements.Wind power has become established as an alternative power source that forms a significant proportion of national energy generation. An increasing proportion of turbines is being constructed offshore to exploit higher average wind speeds and to avoid development issues associated with onshore wind farms. Isolated locations and unpredictable weather conditions lead to increased access costs for operators when conducting scheduled and unscheduled maintenance and repairs. This has increased interest in condition monitoring systems which can track the current state of components within a wind turbine and provide operators with predicted future trends. Asset management can be improved through condition based maintenance regimes and preventative repairs. Development of novel condition monitoring systems that can accurately predict incipient damage can optimise operational performance and reduce the overall level of wind turbine generation costs. The work described in this thesis presents the development of novel sensors that may be applied to monitor wind turbine gearboxes, a component that experiences relatively high failure rates and causes considerable turbine downtime. Current systems and technology that may be adapted for use in wind turbine condition monitoring are evaluated. Lubrication related monitoring systems have been identified as an area that could be improved and are divided into those that track liberated wear material suspended in the lubricant and those that assess the state of the lubricant itself. This study presents two novel lubrication based gearbox monitoring sensors that potentially offer a low cost solution for continuous data capture. The first demonstrates the potential for active pixel sensors such as those found in digital cameras to capture images of wear particles within gearbox lubricants. Particle morphology was tracked in this system, allowing the type of particles to be correlated with the type of wear that is generated and a potential source. The second sensor uses a targeted form of infra-red absorption spectroscopy to track changes in the lubricant chemistry due to the increase in acidity. Ensuring the lubricant is functioning correctly decreases component stress and fatigue, reducing maintenance requirements
    • …
    corecore