3,274 research outputs found

    A New Spherical Harmonics Scheme for Multi-Dimensional Radiation Transport I: Static Matter Configurations

    Get PDF
    Recent work by McClarren & Hauck [29] suggests that the filtered spherical harmonics method represents an efficient, robust, and accurate method for radiation transport, at least in the two-dimensional (2D) case. We extend their work to the three-dimensional (3D) case and find that all of the advantages of the filtering approach identified in 2D are present also in the 3D case. We reformulate the filter operation in a way that is independent of the timestep and of the spatial discretization. We also explore different second- and fourth-order filters and find that the second-order ones yield significantly better results. Overall, our findings suggest that the filtered spherical harmonics approach represents a very promising method for 3D radiation transport calculations.Comment: 29 pages, 13 figures. Version matching the one in Journal of Computational Physic

    General relativistic neutrino transport using spectral methods

    Full text link
    We present a new code, Lorene's Ghost (for Lorene's gravitational handling of spectral transport) developed to treat the problem of neutrino transport in supernovae with the use of spectral methods. First, we derive the expression for the nonrelativistic Liouville operator in doubly spherical coordinates (r, theta, phi, epsilon, Theta, Phi)$, and further its general relativistic counterpart. We use the 3 + 1 formalism with the conformally flat approximation for the spatial metric, to express the Liouville operator in the Eulerian frame. Our formulation does not use any approximations when dealing with the angular arguments (theta, phi, Theta, Phi), and is fully energy-dependent. This approach is implemented in a spherical shell, using either Chebyshev polynomials or Fourier series as decomposition bases. It is here restricted to simplified collision terms (isoenergetic scattering) and to the case of a static fluid. We finish this paper by presenting test results using basic configurations, including general relativistic ones in the Schwarzschild metric, in order to demonstrate the convergence properties, the conservation of particle number and correct treatment of some general-relativistic effects of our code. The use of spectral methods enables to run our test cases in a six-dimensional setting on a single processor.Comment: match published versio

    A Finite Element Method for Angular Discretization of the Radiation Transport Equation on Spherical Geodesic Grids

    Full text link
    Discrete ordinate (SNS_N) and filtered spherical harmonics (FPNFP_N) based schemes have been proven to be robust and accurate in solving the Boltzmann transport equation but they have their own strengths and weaknesses in different physical scenarios. We present a new method based on a finite element approach in angle that combines the strengths of both methods and mitigates their disadvantages. The angular variables are specified on a spherical geodesic grid with functions on the sphere being represented using a finite element basis. A positivity-preserving limiting strategy is employed to prevent non-physical values from appearing in the solutions. The resulting method is then compared with both SNS_N and FPNFP_N schemes using four test problems and is found to perform well when one of the other methods fail.Comment: 24 pages, 13 figure

    A realizability-preserving high-order kinetic scheme using WENO reconstruction for entropy-based moment closures of linear kinetic equations in slab geometry

    Full text link
    We develop a high-order kinetic scheme for entropy-based moment models of a one-dimensional linear kinetic equation in slab geometry. High-order spatial reconstructions are achieved using the weighted essentially non-oscillatory (WENO) method, and for time integration we use multi-step Runge-Kutta methods which are strong stability preserving and whose stages and steps can be written as convex combinations of forward Euler steps. We show that the moment vectors stay in the realizable set using these time integrators along with a maximum principle-based kinetic-level limiter, which simultaneously dampens spurious oscillations in the numerical solutions. We present numerical results both on a manufactured solution, where we perform convergence tests showing our scheme converges of the expected order up to the numerical noise from the numerical optimization, as well as on two standard benchmark problems, where we show some of the advantages of high-order solutions and the role of the key parameter in the limiter

    "Mariage des Maillages": A new numerical approach for 3D relativistic core collapse simulations

    Full text link
    We present a new 3D general relativistic hydrodynamics code for simulations of stellar core collapse to a neutron star, as well as pulsations and instabilities of rotating relativistic stars. It uses spectral methods for solving the metric equations, assuming the conformal flatness approximation for the three-metric. The matter equations are solved by high-resolution shock-capturing schemes. We demonstrate that the combination of a finite difference grid and a spectral grid can be successfully accomplished. This "Mariage des Maillages" (French for grid wedding) approach results in high accuracy of the metric solver and allows for fully 3D applications using computationally affordable resources, and ensures long term numerical stability of the evolution. We compare our new approach to two other, finite difference based, methods to solve the metric equations. A variety of tests in 2D and 3D is presented, involving highly perturbed neutron star spacetimes and (axisymmetric) stellar core collapse, demonstrating the ability to handle spacetimes with and without symmetries in strong gravity. These tests are also employed to assess gravitational waveform extraction, which is based on the quadrupole formula.Comment: 29 pages, 16 figures; added more information about convergence tests and grid setu

    Gravitating discs around black holes

    Full text link
    Fluid discs and tori around black holes are discussed within different approaches and with the emphasis on the role of disc gravity. First reviewed are the prospects of investigating the gravitational field of a black hole--disc system by analytical solutions of stationary, axially symmetric Einstein's equations. Then, more detailed considerations are focused to middle and outer parts of extended disc-like configurations where relativistic effects are small and the Newtonian description is adequate. Within general relativity, only a static case has been analysed in detail. Results are often very inspiring, however, simplifying assumptions must be imposed: ad hoc profiles of the disc density are commonly assumed and the effects of frame-dragging and completely lacking. Astrophysical discs (e.g. accretion discs in active galactic nuclei) typically extend far beyond the relativistic domain and are fairly diluted. However, self-gravity is still essential for their structure and evolution, as well as for their radiation emission and the impact on the environment around. For example, a nuclear star cluster in a galactic centre may bear various imprints of mutual star--disc interactions, which can be recognised in observational properties, such as the relation between the central mass and stellar velocity dispersion.Comment: Accepted for publication in CQG; high-resolution figures will be available from http://www.iop.org/EJ/journal/CQ
    • …
    corecore