55 research outputs found

    Combinatorial Optimization

    Get PDF
    Combinatorial Optimization is a very active field that benefits from bringing together ideas from different areas, e.g., graph theory and combinatorics, matroids and submodularity, connectivity and network flows, approximation algorithms and mathematical programming, discrete and computational geometry, discrete and continuous problems, algebraic and geometric methods, and applications. We continued the long tradition of triannual Oberwolfach workshops, bringing together the best researchers from the above areas, discovering new connections, and establishing new and deepening existing international collaborations

    Convex Hulls of Algebraic Sets

    Full text link
    This article describes a method to compute successive convex approximations of the convex hull of a set of points in R^n that are the solutions to a system of polynomial equations over the reals. The method relies on sums of squares of polynomials and the dual theory of moment matrices. The main feature of the technique is that all computations are done modulo the ideal generated by the polynomials defining the set to the convexified. This work was motivated by questions raised by Lov\'asz concerning extensions of the theta body of a graph to arbitrary real algebraic varieties, and hence the relaxations described here are called theta bodies. The convexification process can be seen as an incarnation of Lasserre's hierarchy of convex relaxations of a semialgebraic set in R^n. When the defining ideal is real radical the results become especially nice. We provide several examples of the method and discuss convergence issues. Finite convergence, especially after the first step of the method, can be described explicitly for finite point sets.Comment: This article was written for the "Handbook of Semidefinite, Cone and Polynomial Optimization: Theory, Algorithms, Software and Applications

    Theta Bodies for Polynomial Ideals

    Full text link
    Inspired by a question of Lov\'asz, we introduce a hierarchy of nested semidefinite relaxations of the convex hull of real solutions to an arbitrary polynomial ideal, called theta bodies of the ideal. For the stable set problem in a graph, the first theta body in this hierarchy is exactly Lov\'asz's theta body of the graph. We prove that theta bodies are, up to closure, a version of Lasserre's relaxations for real solutions to ideals, and that they can be computed explicitly using combinatorial moment matrices. Theta bodies provide a new canonical set of semidefinite relaxations for the max cut problem. For vanishing ideals of finite point sets, we give several equivalent characterizations of when the first theta body equals the convex hull of the points. We also determine the structure of the first theta body for all ideals.Comment: 26 pages, 3 figure

    A Semidefinite Approach to the KiK_i Cover Problem

    Full text link
    We apply theta body relaxations to the KiK_i-cover problem and show polynomial time solvability for certain classes of graphs. In particular, we give an effective relaxation where all KiK_i-pp-hole facets are valid, and study its relation to an open question of Conforti et al. For the triangle free problem, we show for KnK_n that the theta body relaxations do not converge by (n−2)/4(n-2)/4 steps; we also prove for all GG an integrality gap of 2 for the second theta body

    Computation with Polynomial Equations and Inequalities arising in Combinatorial Optimization

    Full text link
    The purpose of this note is to survey a methodology to solve systems of polynomial equations and inequalities. The techniques we discuss use the algebra of multivariate polynomials with coefficients over a field to create large-scale linear algebra or semidefinite programming relaxations of many kinds of feasibility or optimization questions. We are particularly interested in problems arising in combinatorial optimization.Comment: 28 pages, survey pape

    Combinatorial Optimization

    Get PDF
    Combinatorial Optimization is an active research area that developed from the rich interaction among many mathematical areas, including combinatorics, graph theory, geometry, optimization, probability, theoretical computer science, and many others. It combines algorithmic and complexity analysis with a mature mathematical foundation and it yields both basic research and applications in manifold areas such as, for example, communications, economics, traffic, network design, VLSI, scheduling, production, computational biology, to name just a few. Through strong inner ties to other mathematical fields it has been contributing to and benefiting from areas such as, for example, discrete and convex geometry, convex and nonlinear optimization, algebraic and topological methods, geometry of numbers, matroids and combinatorics, and mathematical programming. Moreover, with respect to applications and algorithmic complexity, Combinatorial Optimization is an essential link between mathematics, computer science and modern applications in data science, economics, and industry

    On vertices and facets of combinatorial 2-level polytopes

    Get PDF
    2-level polytopes naturally appear in several areas of mathematics, including combinatorial optimization, polyhedral combinatorics, communication complexity, and statistics. We investigate upper bounds on the product of the number of facets and the number of vertices, where d is the dimension of a 2-level polytope P. This question was first posed in [3], where experimental results showed an upper bound of d2^{d+1} up to d = 6, where d is the dimension of the polytope. We show that this bound holds for all known (to the best of our knowledge) 2-level polytopes coming from combinatorial settings, including stable set polytopes of perfect graphs and all 2-level base polytopes of matroids. For the latter family, we also give a simple description of the facet-defining inequalities. These results are achieved by an investigation of related combinatorial objects, that could be of independent interest
    • …
    corecore