3,815 research outputs found

    Homogeneous Spiking Neuromorphic System for Real-World Pattern Recognition

    Get PDF
    A neuromorphic chip that combines CMOS analog spiking neurons and memristive synapses offers a promising solution to brain-inspired computing, as it can provide massive neural network parallelism and density. Previous hybrid analog CMOS-memristor approaches required extensive CMOS circuitry for training, and thus eliminated most of the density advantages gained by the adoption of memristor synapses. Further, they used different waveforms for pre and post-synaptic spikes that added undesirable circuit overhead. Here we describe a hardware architecture that can feature a large number of memristor synapses to learn real-world patterns. We present a versatile CMOS neuron that combines integrate-and-fire behavior, drives passive memristors and implements competitive learning in a compact circuit module, and enables in-situ plasticity in the memristor synapses. We demonstrate handwritten-digits recognition using the proposed architecture using transistor-level circuit simulations. As the described neuromorphic architecture is homogeneous, it realizes a fundamental building block for large-scale energy-efficient brain-inspired silicon chips that could lead to next-generation cognitive computing.Comment: This is a preprint of an article accepted for publication in IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol 5, no. 2, June 201

    Feedback Based Architecture for Reading Check Courtesy Amounts

    Get PDF
    In recent years, a number of large-scale applications continue to rely heavily on the use of paper as the dominant medium, either on intra-organization basis or on inter-organization basis, including paper intensive applications in the check processing application. In many countries, the value of each check is read by human eyes before the check is physically transported, in stages, from the point it was presented to the location of the branch of the bank which issued the blank check to the concerned account holder. Such process of manual reading of each check involves significant time and cost. In this research, a new approach is introduced to read the numerical amount field on the check; also known as the courtesy amount field. In the case of check processing, the segmentation of unconstrained strings into individual digits is a challenging task because one needs to accommodate special cases involving: connected or overlapping digits, broken digits, and digits physically connected to a piece of stroke that belongs to a neighboring digit. The system described in this paper involves three stages: segmentation, normalization, and the recognition of each character using a neural network classifier, with results better than many other methods in the literaratu
    • …
    corecore