539 research outputs found

    ACE-OT: Polarimetric SAR data based amplitude contrast enhancement algorithm for offset tracking applications

    Get PDF
    The use of polarimetric synthetic aperture radar (SAR) data can improve the performance of persistent scatterer interferometry (PSI). However, its huge potential remains locked for the amplitude information-based offset tracking (OT) technology. For example, to the best knowledge of the authors, there is no single example of a polarization-based image optimization method that has been developed for OT processing. In this article, an amplitude contrast enhancement (ACE) algorithm is introduced, which demonstrates the potential of the polarimetric SAR data on the improvement of OT performance. Its core idea is finding the optimal combination of the different scattering mechanisms for each pixel to improve the contrast. First, the orientation of the reflected polarization ellipse is removed, to avoid the influence of the geometric relationship between the antenna and the target, and the properties of the target. Then three similarity parameters are defined to represent the three basic reflection types of the single bounce, the double bounce, and the random reflection. After that, the optimizing equation is constructed with two optimizing vectors. Finally, the optimizing vectors are calculated to obtain the enhanced amplitude image. Three examples of the enhancement are presented with different PolSAR images sets of both full- (Radarsat-2) and dual-polarization (TerraSAR-X and Sentinel-1). The performance of ACE-OT has been compared with another method, the adaptive histogram enhancement (AHE). The impact of the number of polarization channels available on ACE-OT performance has also been studied.This work was supported in part by the China Scholarship Council under Grant 201806420035, in part by the Spanish Ministry of Science and Innovation (MCIN), in part by the State Research Agency (AEI) Project under Grant PID2020-117303GB-C21 and Grant MCIN/AEI/10.13039/501100011033, in part by the National Natural Science Foundation of China under Grant 42004011, in part by the China Postdoctoral Science Foundation under Grant 2020M671646, and in part by the Construction Program of Space-Air-Ground-Well Cooperative Awareness Spatial Information Project under Grant B20046.Peer ReviewedPostprint (author's final draft

    A ship detector applying Principal Component Analysis to the polarimetric Notch Filter

    Get PDF
    Ship detection using polarimetric synthetic aperture radar (PolSAR) data has attracted a lot of attention in recent years. Polarimetry can provide information regarding the scattering mechanisms of targets, which helps discriminate between ships and sea clutter. This enhancement is particularly valuable when we aim at detecting smaller vessels in rough sea states. This work exploits a ship detector called the Geometrical Perturbation-Polarimetric Notch Filter (GP-PNF), and it is aimed at improving its performance especially when less polarimetric images are available (e.g., dual-polarimetric data). The idea is to design a new polarimetric feature vector containing more features that are renowned to allow separation between ships and sea clutter. Then, a Principal Component Analysis (PCA) is further used to reduce the dimensionality of the new feature space. Experiments on four real Sentinel-1 datasets are carried out to demonstrate the validity of the proposed method and compare it against other ship detectors. Analyses of the experimental results show that the proposed algorithm can not only reduce the false alarms significantly, but also enhance the target-to-clutter ratio (TCR) so that it can more effectively detect weaker ships

    New SAR Target Imaging Algorithm based on Oblique Projection for Clutter Reduction

    Get PDF
    International audienceWe have developed a new Synthetic Aperture Radar (SAR) algorithm based on physical models for the detection of a Man-Made Target (MMT) embedded in strong clutter (trunks in a forest). The physical models for the MMT and the clutter are represented by low-rank subspaces and are based on scattering and polarimetric properties. Our SAR algorithm applies the oblique projection of the received signal along the clutter subspace onto the target subspace. We compute its statistical performance in terms of probabilities of detection and false alarms. The performances of the proposed SAR algorithm are improved compared to those obtained with existing SAR algorithms: the MMT detection is greatly improved and the clutter is rejected. We also studied the robustness of our new SAR algorithm to interference modeling errors. Results on real FoPen (Foliage Penetration) data showed the usefulness of this approach

    Detecting depolarized targets using a new geometrical perturbation filter

    Get PDF
    Target detectors using polarimetry are often focused on single targets, since these can be characterized in a simpler and deterministic way. The algorithm proposed in this paper is aimed at the more difficult problem of partial target detection (i.e. targets with arbitrary degree of polarization). The authors have already proposed a single target detector employing filters based on a geometrical perturbation. In order to enhance the algorithm to the detection of partial targets, a new vector formalism is introduced. The latter is similar to the one exploited for single targets but suitable for complete characterization of partial targets. A new feature vector is generated starting from the covariance matrix, and exploited for the perturbation method. Validation against L-band fully polarimetric airborne E-SAR, and satellite ALOS-PALSAR data and X-band dual polarimetric TerraSAR-X data is provided with significant agreement with the expected results. Additionally, a comparison with the supervised Wishart classifier is presented revealing improvements

    Cryosphere Applications

    Get PDF
    Synthetic aperture radar (SAR) provides large coverage and high resolution, and it has been proven to be sensitive to both surface and near-surface features related to accumulation, ablation, and metamorphism of snow and firn. Exploiting this sensitivity, SAR polarimetry and polarimetric interferometry found application to land ice for instance for the estimation of wave extinction (which relates to sub surface ice volume structure) and for the estimation of snow water equivalent (which relates to snow density and depth). After presenting these applications, the Chapter proceeds by reviewing applications of SAR polarimetry to sea ice for the classification of different ice types, the estimation of thickness, and the characterisation of its surface. Finally, an application to the characterisation of permafrost regions is considered. For each application, the used (model-based) decomposition and polarimetric parameters are critically described, and real data results from relevant airborne campaigns and space borne acquisitions are reported

    Monitoring of Tsunami/Earthquake Damages by Polarimetric Microwave Remote Sensing Technique

    Get PDF
    Polarization characterizes the vector state of EM wave. When interacting with polarized wave, rough natural surface often induces dominant surface scattering; building also presents dominant double-bounce scattering. Tsunami/earthquake causes serious destruction just by inundating the land surface and destroying the building. By analyzing the change of surface and double-bounce scattering before and after disaster, we can achieve a monitoring of damages. This constitutes one basic principle of polarimetric microwave remote sensing of tsunami/earthquake. The extraction of surface and double-bounce scattering from coherency matrix is achieved by model-based decomposition. The general four-component scattering power decomposition with unitary transformation (G4U) has been widely used in the remote sensing of tsunami/earthquake to identify surface and double-bounce scattering because it can adaptively enhance surface or double-bounce scattering. Nonetheless, the strict derivation in this chapter conveys that G4U cannot always strengthen the double-bounce scattering in urban area nor strengthen the surface scattering in water or land area unless we adaptively combine G4U and its duality for an extended G4U (EG4U). Experiment on the ALOS-PALSAR datasets of 2011 great Tohoku tsunami/earthquake demonstrates not only the outperformance of EG4U but also the effectiveness of polarimetric remote sensing in the qualitative monitoring and quantitative evaluation of tsunami/earthquake damages

    Summaries of the Sixth Annual JPL Airborne Earth Science Workshop

    Get PDF
    The Sixth Annual JPL Airborne Earth Science Workshop, held in Pasadena, California, on March 4-8, 1996, was divided into two smaller workshops:(1) The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) workshop, and The Airborne Synthetic Aperture Radar (AIRSAR) workshop. This current paper, Volume 2 of the Summaries of the Sixth Annual JPL Airborne Earth Science Workshop, presents the summaries for The Airborne Synthetic Aperture Radar (AIRSAR) workshop

    Electromagnetic Wave Theory and Applications

    Get PDF
    Contains table of content for Section 3, reports on ten research projects and a list of publications.U.S. Navy - Office of Naval Research Contract N00014-92-J-4098U.S. Federal Aviation Administration Contract 94-G-007U.S. Federal Aviation Administration Contract 97-G-031California Institute of Technology Contract JPL 960408National Aeronautics and Space Administration Contract JPL 958461U.S. Navy - Office of Naval Research Contract N00014-92-J-1616National Science Foundation Grant ECS 96-15799U.S. Navy - Office of Naval Research Contract N00014-97-1-0172Joint Services Electronics Program Contract DAAH04-95-1-0038Mitsubishi Corporatio
    • …
    corecore