330 research outputs found

    Remote sensing of earth terrain

    Get PDF
    A mathematically rigorous and fully polarimetric radar clutter model used to evaluate the radar backscatter from various types of terrain clutter such as forested areas, vegetation canopies, snow covered terrains, or ice fields is presented. With this model, the radar backscattering coefficients for the multichannel polarimetric radar returns can be calculated, in addition to the complex cross correlation coefficients between elements of the polarimetric measurement vector. The complete polarization covariance matrix can be computed and the scattering properties of the clutter environment characterized over a broad range of incident angle and frequencies

    Remote sensing of earth terrain

    Get PDF
    A systematic approach for the identification of terrain media such as vegetation canopy, forest, and snow covered fields is developed using the optimum polarimetric classifier. The covariance matrices for the various terrain covers are computed from the theoretical models of random medium by evaluating the full polarimetric scattering matrix elements. The optimal classification scheme makes use of a quadratic distance measure and is applied to classify a vegetation canopy consisting of both trees and grass. Experimentally measured data are used to validate the classification scheme. Theoretical probability of classification error using the full polarimetric matrix are compared with classification based on single features including the phase difference between the VV and HH polarization returns. It is shown that the full polarimetric results are optimal and provide better classification performance than single feature measurements. A systematic approach is presented for obtaining the optimal polarimetric matched filter which produces maximum contrast between two scattering classes, each represented by its respective covariance matrix

    A ship detector applying Principal Component Analysis to the polarimetric Notch Filter

    Get PDF
    Ship detection using polarimetric synthetic aperture radar (PolSAR) data has attracted a lot of attention in recent years. Polarimetry can provide information regarding the scattering mechanisms of targets, which helps discriminate between ships and sea clutter. This enhancement is particularly valuable when we aim at detecting smaller vessels in rough sea states. This work exploits a ship detector called the Geometrical Perturbation-Polarimetric Notch Filter (GP-PNF), and it is aimed at improving its performance especially when less polarimetric images are available (e.g., dual-polarimetric data). The idea is to design a new polarimetric feature vector containing more features that are renowned to allow separation between ships and sea clutter. Then, a Principal Component Analysis (PCA) is further used to reduce the dimensionality of the new feature space. Experiments on four real Sentinel-1 datasets are carried out to demonstrate the validity of the proposed method and compare it against other ship detectors. Analyses of the experimental results show that the proposed algorithm can not only reduce the false alarms significantly, but also enhance the target-to-clutter ratio (TCR) so that it can more effectively detect weaker ships

    Detecting depolarized targets using a new geometrical perturbation filter

    Get PDF
    Target detectors using polarimetry are often focused on single targets, since these can be characterized in a simpler and deterministic way. The algorithm proposed in this paper is aimed at the more difficult problem of partial target detection (i.e. targets with arbitrary degree of polarization). The authors have already proposed a single target detector employing filters based on a geometrical perturbation. In order to enhance the algorithm to the detection of partial targets, a new vector formalism is introduced. The latter is similar to the one exploited for single targets but suitable for complete characterization of partial targets. A new feature vector is generated starting from the covariance matrix, and exploited for the perturbation method. Validation against L-band fully polarimetric airborne E-SAR, and satellite ALOS-PALSAR data and X-band dual polarimetric TerraSAR-X data is provided with significant agreement with the expected results. Additionally, a comparison with the supervised Wishart classifier is presented revealing improvements

    Electromagnetic Wave Theory and Applications

    Get PDF
    Contains table of contents for Section 3 and reports on seven research projects.Joint Services Electronics Program Contract DAAL03-89-C-0001National Science Foundation Contract ECS 86-20029Schlumberger- Doll ResearchU.S. Army Research Office Contract DAAL03 88-K-0057National Aeronautics and Space Administration Contract NAGW-1617U.S. Navy - Office of Naval Research Contract N00014-89-J-1107National Aeronautics and Space Administration Contract NAGW-1272National Aeronautics and Space Administration Contract 958461Simulation Technologies Contract DAAH01-87-C-0679U.S. Army Corp of Engineers Contract DACA39-87-K-0022WaveTracer, Inc.U.S. Navy - Office of Naval Research Contract N00014-89-J-1019U.S. Air Force Systems - Electronic Systems Division Contract F19628-88-K-0013Digital Equipment CorporationInternational Business Machines CorporationU.S. Department of Transportation Contract DTRS-57-88-C-0007

    Electromagnetic Wave Theory and Applications

    Get PDF
    Contains table of contents for Section 3, research summary and reports on six research projects.Joint Services Electronics Program (Contract DAAL 03-86-K-0002)Joint Services Electronics Program (Contract DAAL 03-89-C-0001)U.S. Navy - Office of Naval Research (Contract N00014-86-K-0533)National Science Foundation (Contract ECS 86-20029)U.S. Army Research Office (Contract DAAL03 88-K-0057)International Business Machine CorporationSchlumberger-Doll ResearchNational Aeronautics and Space Administration (Contract NAG 5-270)U.S. Navy - Office of Naval Research (Contract N00014-83-K-0258)National Aeronautics and Space Administration (Contract NAG 5-769)U.S. Army Corps of Engineers - Waterways Experimental Station (Contract DACA39-87-K-0022)Simulation TechnologiesU.S. Air Force - Rome Air Development Center (Contract F19628-88-K-0013)U.S. Navy - Office of Naval Research (Contract N00014-89-J-1107)Digital Equipment Corporatio

    Electromagnetic Wave Theory and Applications

    Get PDF
    Contains table of contents for Section 3, reports on six research projects and a list of publications and conference papers.Joint Services Electronics Program Contract DAAL03-89-C-0001National Science Foundation Grant ECS 86-20029Schlumberger- Doll ResearchU.S. Army Research Office Contract DAAL03 88-K-0057U.S. Navy - Office of Naval Research Contract N00014-90-J-1002National Aeronautics and Space Administration Grant NAGW-1617U.S. Navy - Office of Naval Research Grant N00014-89-J-1107National Aeronautics and Space Administration Grant NAGW-1272National Aeronautics and Space Administration Agreement 958461U.S. Army - Corps of Engineers Contract DACA39-87-K-0022U.S. Air Force - Electronic Systems Division Contract F19628-88-K-0013U.S. Navy - Office of Naval Research Grant N00014-89-J-1019Digital Equipment CorporationIBM CorporationU.S. Department of Transportation Contract DTRS-57-88-C-00078Defence Advanced Research Projects Agency Contract MDA972-90-C-002

    Adaptive Speckle Filtering in Radar Imagery

    Get PDF
    corecore