545 research outputs found

    Sub-Optimal Tracking in Switched Systems With Controlled Subsystems and Fixed-Mode Sequence Using Approximate Dynamic Programming

    Get PDF
    Optimal tracking in switched systems with controlled subsystem and Discrete-time (DT) dynamics is investigated. A feedback control policy is generated such that a) the system tracks the desired reference signal, and b) the optimal switching time instants are sought. For finding the optimal solution, approximate dynamic programming is used. Simulation results are provided to illustrate the effectiveness of the solution

    Sub-optimal Tracking in Switched Systems with Controlled Subsystems and Fixed-mode Sequence using Approximate Dynamic Programming

    Get PDF
    Optimal tracking in switched systems with controlled subsystem and Discrete-time (DT) dynamics is investigated. A feedback control policy is generated such that a) the system tracks the desired reference signal, and b) the optimal switching time instants are sought. For finding the optimal solution, approximate dynamic programming is used. Simulation results are provided to illustrate the effectiveness of the solution.Comment: 6 pages, 2 figures, This article has been accepted for oral presentation at 2019 Dynamic System and Control Conference. The content is the same as the final edition of the accepted paper. However, the presentation might be differen

    Approximate dynamic programming based solutions for fixed-final-time optimal control and optimal switching

    Get PDF
    Optimal solutions with neural networks (NN) based on an approximate dynamic programming (ADP) framework for new classes of engineering and non-engineering problems and associated difficulties and challenges are investigated in this dissertation. In the enclosed eight papers, the ADP framework is utilized for solving fixed-final-time problems (also called terminal control problems) and problems with switching nature. An ADP based algorithm is proposed in Paper 1 for solving fixed-final-time problems with soft terminal constraint, in which, a single neural network with a single set of weights is utilized. Paper 2 investigates fixed-final-time problems with hard terminal constraints. The optimality analysis of the ADP based algorithm for fixed-final-time problems is the subject of Paper 3, in which, it is shown that the proposed algorithm leads to the global optimal solution providing certain conditions hold. Afterwards, the developments in Papers 1 to 3 are used to tackle a more challenging class of problems, namely, optimal control of switching systems. This class of problems is divided into problems with fixed mode sequence (Papers 4 and 5) and problems with free mode sequence (Papers 6 and 7). Each of these two classes is further divided into problems with autonomous subsystems (Papers 4 and 6) and problems with controlled subsystems (Papers 5 and 7). Different ADP-based algorithms are developed and proofs of convergence of the proposed iterative algorithms are presented. Moreover, an extension to the developments is provided for online learning of the optimal switching solution for problems with modeling uncertainty in Paper 8. Each of the theoretical developments is numerically analyzed using different real-world or benchmark problems --Abstract, page v

    λͺ¨λΈκΈ°λ°˜κ°•ν™”ν•™μŠ΅μ„μ΄μš©ν•œκ³΅μ •μ œμ–΄λ°μ΅œμ ν™”

    Get PDF
    ν•™μœ„λ…Όλ¬Έ(박사)--μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› :κ³΅κ³ΌλŒ€ν•™ 화학생물곡학뢀,2020. 2. 이쒅민.순차적 μ˜μ‚¬κ²°μ • λ¬Έμ œλŠ” 곡정 μ΅œμ ν™”μ˜ 핡심 λΆ„μ•Ό 쀑 ν•˜λ‚˜μ΄λ‹€. 이 문제의 수치적 해법 쀑 κ°€μž₯ 많이 μ‚¬μš©λ˜λŠ” 것은 순방ν–₯으둜 μž‘λ™ν•˜λŠ” 직접법 (direct optimization) λ°©λ²•μ΄μ§€λ§Œ, λͺ‡κ°€μ§€ ν•œκ³„μ μ„ μ§€λ‹ˆκ³  μžˆλ‹€. μ΅œμ ν•΄λŠ” open-loop의 ν˜•νƒœλ₯Ό μ§€λ‹ˆκ³  있으며, λΆˆν™•μ •μ„±μ΄ μ‘΄μž¬ν• λ•Œ λ°©λ²•λ‘ μ˜ 수치적 λ³΅μž‘λ„κ°€ μ¦κ°€ν•œλ‹€λŠ” 것이닀. 동적 κ³„νšλ²• (dynamic programming) 은 μ΄λŸ¬ν•œ ν•œκ³„μ μ„ κ·Όμ›μ μœΌλ‘œ ν•΄κ²°ν•  수 μžˆμ§€λ§Œ, κ·Έλ™μ•ˆ 곡정 μ΅œμ ν™”μ— 적극적으둜 κ³ λ €λ˜μ§€ μ•Šμ•˜λ˜ μ΄μœ λŠ” 동적 κ³„νšλ²•μ˜ 결과둜 얻어진 νŽΈλ―ΈλΆ„ 방정식 λ¬Έμ œκ°€ μœ ν•œμ°¨μ› 벑터곡간이 μ•„λ‹Œ λ¬΄ν•œμ°¨μ›μ˜ ν•¨μˆ˜κ³΅κ°„μ—μ„œ 닀루어지기 λ•Œλ¬Έμ΄λ‹€. μ†Œμœ„ μ°¨μ›μ˜ 저주라고 λΆˆλ¦¬λŠ” 이 문제λ₯Ό ν•΄κ²°ν•˜κΈ° μœ„ν•œ ν•œκ°€μ§€ λ°©λ²•μœΌλ‘œμ„œ, μƒ˜ν”Œμ„ μ΄μš©ν•œ 근사적 해법에 μ΄ˆμ μ„ λ‘” κ°•ν™”ν•™μŠ΅ 방법둠이 μ—°κ΅¬λ˜μ–΄ μ™”λ‹€. λ³Έ ν•™μœ„λ…Όλ¬Έμ—μ„œλŠ” κ°•ν™”ν•™μŠ΅ 방법둠 쀑, 곡정 μ΅œμ ν™”μ— μ ν•©ν•œ λͺ¨λΈ 기반 κ°•ν™”ν•™μŠ΅μ— λŒ€ν•΄ μ—°κ΅¬ν•˜κ³ , 이λ₯Ό 곡정 μ΅œμ ν™”μ˜ λŒ€ν‘œμ μΈ 세가지 순차적 μ˜μ‚¬κ²°μ • 문제인 μŠ€μΌ€μ€„λ§, μƒμœ„λ‹¨κ³„ μ΅œμ ν™”, ν•˜μœ„λ‹¨κ³„ μ œμ–΄μ— μ μš©ν•˜λŠ” 것을 λͺ©ν‘œλ‘œ ν•œλ‹€. 이 λ¬Έμ œλ“€μ€ 각각 λΆ€λΆ„κ΄€μΈ‘ 마λ₯΄μ½”ν”„ κ²°μ • κ³Όμ • (partially observable Markov decision process), μ œμ–΄-μ•„ν•€ μƒνƒœκ³΅κ°„ λͺ¨λΈ (control-affine state space model), 일반적 μƒνƒœκ³΅κ°„ λͺ¨λΈ (general state space model)둜 λͺ¨λΈλ§λœλ‹€. λ˜ν•œ 각 수치적 λͺ¨λΈλ“€μ„ ν•΄κ²°ν•˜κΈ° μœ„ν•΄ point based value iteration (PBVI), globalized dual heuristic programming (GDHP), and differential dynamic programming (DDP)둜 λΆˆλ¦¬λŠ” 방법듀을 λ„μž…ν•˜μ˜€λ‹€. 이 세가지 λ¬Έμ œμ™€ λ°©λ²•λ‘ μ—μ„œ μ œμ‹œλœ νŠΉμ§•λ“€μ„ λ‹€μŒκ³Ό 같이 μš”μ•½ν•  수 μžˆλ‹€: 첫번째둜, μŠ€μΌ€μ€„λ§ λ¬Έμ œμ—μ„œ closed-loop ν”Όλ“œλ°± ν˜•νƒœμ˜ ν•΄λ₯Ό μ œμ‹œν•  수 μžˆμ—ˆλ‹€. μ΄λŠ” κΈ°μ‘΄ μ§μ ‘λ²•μ—μ„œ 얻을 수 μ—†μ—ˆλ˜ ν˜•νƒœλ‘œμ„œ, κ°•ν™”ν•™μŠ΅μ˜ 강점을 뢀각할 수 μžˆλŠ” 츑면이라 생각할 수 μžˆλ‹€. λ‘λ²ˆμ§Έλ‘œ κ³ λ €ν•œ ν•˜μœ„λ‹¨κ³„ μ œμ–΄ λ¬Έμ œμ—μ„œ, 동적 κ³„νšλ²•μ˜ λ¬΄ν•œμ°¨μ› ν•¨μˆ˜κ³΅κ°„ μ΅œμ ν™” 문제λ₯Ό ν•¨μˆ˜ 근사 방법을 톡해 μœ ν•œμ°¨μ› 벑터곡간 μ΅œμ ν™” 문제둜 μ™„ν™”ν•  수 μžˆλŠ” 방법을 λ„μž…ν•˜μ˜€λ‹€. 특히, 심측 신경망을 μ΄μš©ν•˜μ—¬ ν•¨μˆ˜ 근사λ₯Ό ν•˜μ˜€κ³ , μ΄λ•Œ λ°œμƒν•˜λŠ” μ—¬λŸ¬κ°€μ§€ μž₯점과 수렴 해석 κ²°κ³Όλ₯Ό λ³Έ ν•™μœ„λ…Όλ¬Έμ— μ‹€μ—ˆλ‹€. λ§ˆμ§€λ§‰ λ¬Έμ œλŠ” μƒμœ„ 단계 동적 μ΅œμ ν™” λ¬Έμ œμ΄λ‹€. 동적 μ΅œμ ν™” λ¬Έμ œμ—μ„œ λ°œμƒν•˜λŠ” μ œμ•½ μ‘°κ±΄ν•˜μ—μ„œ κ°•ν™”ν•™μŠ΅μ„ μˆ˜ν–‰ν•˜κΈ° μœ„ν•΄, 원-μŒλŒ€ 미뢄동적 κ³„νšλ²• (primal-dual DDP) 방법둠을 μƒˆλ‘œ μ œμ•ˆν•˜μ˜€λ‹€. μ•žμ„œ μ„€λͺ…ν•œ 세가지 λ¬Έμ œμ— 적용된 방법둠을 κ²€μ¦ν•˜κ³ , 동적 κ³„νšλ²•μ΄ 직접법에 비견될 수 μžˆλŠ” λ°©λ²•λ‘ μ΄λΌλŠ” μ£Όμž₯을 μ‹€μ¦ν•˜κΈ° μœ„ν•΄ μ—¬λŸ¬κ°€μ§€ 곡정 예제λ₯Ό μ‹€μ—ˆλ‹€.Sequential decision making problem is a crucial technology for plant-wide process optimization. While the dominant numerical method is the forward-in-time direct optimization, it is limited to the open-loop solution and has difficulty in considering the uncertainty. Dynamic programming method complements the limitations, nonetheless associated functional optimization suffers from the curse-of-dimensionality. The sample-based approach for approximating the dynamic programming, referred to as reinforcement learning (RL) can resolve the issue and investigated throughout this thesis. The method that accounts for the system model explicitly is in particular interest. The model-based RL is exploited to solve the three representative sequential decision making problems; scheduling, supervisory optimization, and regulatory control. The problems are formulated with partially observable Markov decision process, control-affine state space model, and general state space model, and associated model-based RL algorithms are point based value iteration (PBVI), globalized dual heuristic programming (GDHP), and differential dynamic programming (DDP), respectively. The contribution for each problem can be written as follows: First, for the scheduling problem, we developed the closed-loop feedback scheme which highlights the strength compared to the direct optimization method. In the second case, the regulatory control problem is tackled by the function approximation method which relaxes the functional optimization to the finite dimensional vector space optimization. Deep neural networks (DNNs) is utilized as the approximator, and the advantages as well as the convergence analysis is performed in the thesis. Finally, for the supervisory optimization problem, we developed the novel constraint RL framework that uses the primal-dual DDP method. Various illustrative examples are demonstrated to validate the developed model-based RL algorithms and to support the thesis statement on which the dynamic programming method can be considered as a complementary method for direct optimization method.1. Introduction 1 1.1 Motivation and previous work 1 1.2 Statement of contributions 9 1.3 Outline of the thesis 11 2. Background and preliminaries 13 2.1 Optimization problem formulation and the principle of optimality 13 2.1.1 Markov decision process 15 2.1.2 State space model 19 2.2 Overview of the developed RL algorithms 28 2.2.1 Point based value iteration 28 2.2.2 Globalized dual heuristic programming 29 2.2.3 Differential dynamic programming 32 3. A POMDP framework for integrated scheduling of infrastructure maintenance and inspection 35 3.1 Introduction 35 3.2 POMDP solution algorithm 38 3.2.1 General point based value iteration 38 3.2.2 GapMin algorithm 46 3.2.3 Receding horizon POMDP 49 3.3 Problem formulation for infrastructure scheduling 54 3.3.1 State 56 3.3.2 Maintenance and inspection actions 57 3.3.3 State transition function 61 3.3.4 Cost function 67 3.3.5 Observation set and observation function 68 3.3.6 State augmentation 69 3.4 Illustrative example and simulation result 69 3.4.1 Structural point for the analysis of a high dimensional belief space 72 3.4.2 Infinite horizon policy under the natural deterioration process 72 3.4.3 Receding horizon POMDP 79 3.4.4 Validation of POMDP policy via Monte Carlo simulation 83 4. A model-based deep reinforcement learning method applied to finite-horizon optimal control of nonlinear control-affine system 88 4.1 Introduction 88 4.2 Function approximation and learning with deep neural networks 91 4.2.1 GDHP with a function approximator 91 4.2.2 Stable learning of DNNs 96 4.2.3 Overall algorithm 103 4.3 Results and discussions 107 4.3.1 Example 1: Semi-batch reactor 107 4.3.2 Example 2: Diffusion-Convection-Reaction (DCR) process 120 5. Convergence analysis of the model-based deep reinforcement learning for optimal control of nonlinear control-affine system 126 5.1 Introduction 126 5.2 Convergence proof of globalized dual heuristic programming (GDHP) 128 5.3 Function approximation with deep neural networks 137 5.3.1 Function approximation and gradient descent learning 137 5.3.2 Forward and backward propagations of DNNs 139 5.4 Convergence analysis in the deep neural networks space 141 5.4.1 Lyapunov analysis of the neural network parameter errors 141 5.4.2 Lyapunov analysis of the closed-loop stability 150 5.4.3 Overall Lyapunov function 152 5.5 Simulation results and discussions 157 5.5.1 System description 158 5.5.2 Algorithmic settings 160 5.5.3 Control result 161 6. Primal-dual differential dynamic programming for constrained dynamic optimization of continuous system 170 6.1 Introduction 170 6.2 Primal-dual differential dynamic programming for constrained dynamic optimization 172 6.2.1 Augmented Lagrangian method 172 6.2.2 Primal-dual differential dynamic programming algorithm 175 6.2.3 Overall algorithm 179 6.3 Results and discussions 179 7. Concluding remarks 186 7.1 Summary of the contributions 187 7.2 Future works 189 Bibliography 192Docto

    Optimal control and approximations

    Get PDF
    • …
    corecore