212 research outputs found

    Block-Online Multi-Channel Speech Enhancement Using DNN-Supported Relative Transfer Function Estimates

    Get PDF
    This work addresses the problem of block-online processing for multi-channel speech enhancement. Such processing is vital in scenarios with moving speakers and/or when very short utterances are processed, e.g., in voice assistant scenarios. We consider several variants of a system that performs beamforming supported by DNN-based voice activity detection (VAD) followed by post-filtering. The speaker is targeted through estimating relative transfer functions between microphones. Each block of the input signals is processed independently in order to make the method applicable in highly dynamic environments. Owing to the short length of the processed block, the statistics required by the beamformer are estimated less precisely. The influence of this inaccuracy is studied and compared to the processing regime when recordings are treated as one block (batch processing). The experimental evaluation of the proposed method is performed on large datasets of CHiME-4 and on another dataset featuring moving target speaker. The experiments are evaluated in terms of objective and perceptual criteria (such as signal-to-interference ratio (SIR) or perceptual evaluation of speech quality (PESQ), respectively). Moreover, word error rate (WER) achieved by a baseline automatic speech recognition system is evaluated, for which the enhancement method serves as a front-end solution. The results indicate that the proposed method is robust with respect to short length of the processed block. Significant improvements in terms of the criteria and WER are observed even for the block length of 250 ms.Comment: 10 pages, 8 figures, 4 tables. Modified version of the article accepted for publication in IET Signal Processing journal. Original results unchanged, additional experiments presented, refined discussion and conclusion

    Exploiting the bimodality of speech in the cocktail party problem

    Get PDF
    The cocktail party problem is one of following a conversation in a crowded room where there are many competing sound sources, such as the voices of other speakers or music. To address this problem using computers, digital signal processing solutions commonly use blind source separation (BSS) which aims to separate all the original sources (voices) from the mixture simultaneously. Traditionally, BSS methods have relied on information derived from the mixture of sources to separate the mixture into its constituent elements. However, the human auditory system is well adapted to handle the cocktail party scenario, using both auditory and visual information to follow (or hold) a conversation in a such an environment. This thesis focuses on using visual information of the speakers in a cocktail party like scenario to aid in improving the performance of BSS. There are several useful applications of such technology, for example: a pre-processing step for a speech recognition system, teleconferencing or security surveillance. The visual information used in this thesis is derived from the speaker's mouth region, as it is the most visible component of speech production. Initial research presented in this thesis considers a joint statistical model of audio and visual features, which is used to assist in control ling the convergence behaviour of a BSS algorithm. The results of using the statistical models are compared to using the raw audio information alone and it is shown that the inclusion of visual information greatly improves its convergence behaviour. Further research focuses on using the speaker's mouth region to identify periods of time when the speaker is silent through the development of a visual voice activity detector (V-VAD) (i.e. voice activity detection using visual information alone). This information can be used in many different ways to simplify the BSS process. To this end, two novel V-VADs were developed and tested within a BSS framework, which result in significantly improved intelligibility of the separated source associated with the V-VAD output. Thus the research presented in this thesis confirms the viability of using visual information to improve solutions to the cocktail party problem.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Exploiting the bimodality of speech in the cocktail party problem

    Get PDF
    The cocktail party problem is one of following a conversation in a crowded room where there are many competing sound sources, such as the voices of other speakers or music. To address this problem using computers, digital signal processing solutions commonly use blind source separation (BSS) which aims to separate all the original sources (voices) from the mixture simultaneously. Traditionally, BSS methods have relied on information derived from the mixture of sources to separate the mixture into its constituent elements. However, the human auditory system is well adapted to handle the cocktail party scenario, using both auditory and visual information to follow (or hold) a conversation in a such an environment. This thesis focuses on using visual information of the speakers in a cocktail party like scenario to aid in improving the performance of BSS. There are several useful applications of such technology, for example: a pre-processing step for a speech recognition system, teleconferencing or security surveillance. The visual information used in this thesis is derived from the speaker's mouth region, as it is the most visible component of speech production. Initial research presented in this thesis considers a joint statistical model of audio and visual features, which is used to assist in control ling the convergence behaviour of a BSS algorithm. The results of using the statistical models are compared to using the raw audio information alone and it is shown that the inclusion of visual information greatly improves its convergence behaviour. Further research focuses on using the speaker's mouth region to identify periods of time when the speaker is silent through the development of a visual voice activity detector (V-VAD) (i.e. voice activity detection using visual information alone). This information can be used in many different ways to simplify the BSS process. To this end, two novel V-VADs were developed and tested within a BSS framework, which result in significantly improved intelligibility of the separated source associated with the V-VAD output. Thus the research presented in this thesis confirms the viability of using visual information to improve solutions to the cocktail party problem.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Exploiting the bimodality of speech in the cocktail party problem

    Get PDF
    The cocktail party problem is one of following a conversation in a crowded room where there are many competing sound sources, such as the voices of other speakers or music. To address this problem using computers, digital signal processing solutions commonly use blind source separation (BSS) which aims to separate all the original sources (voices) from the mixture simultaneously. Traditionally, BSS methods have relied on information derived from the mixture of sources to separate the mixture into its constituent elements. However, the human auditory system is well adapted to handle the cocktail party scenario, using both auditory and visual information to follow (or hold) a conversation in a such an environment. This thesis focuses on using visual information of the speakers in a cocktail party like scenario to aid in improving the performance of BSS. There are several useful applications of such technology, for example: a pre-processing step for a speech recognition system, teleconferencing or security surveillance. The visual information used in this thesis is derived from the speaker's mouth region, as it is the most visible component of speech production. Initial research presented in this thesis considers a joint statistical model of audio and visual features, which is used to assist in control ling the convergence behaviour of a BSS algorithm. The results of using the statistical models are compared to using the raw audio information alone and it is shown that the inclusion of visual information greatly improves its convergence behaviour. Further research focuses on using the speaker's mouth region to identify periods of time when the speaker is silent through the development of a visual voice activity detector (V-VAD) (i.e. voice activity detection using visual information alone). This information can be used in many different ways to simplify the BSS process. To this end, two novel V-VADs were developed and tested within a BSS framework, which result in significantly improved intelligibility of the separated source associated with the V-VAD output. Thus the research presented in this thesis confirms the viability of using visual information to improve solutions to the cocktail party problem

    Objective Assessment of Machine Learning Algorithms for Speech Enhancement in Hearing Aids

    Get PDF
    Speech enhancement in assistive hearing devices has been an area of research for many decades. Noise reduction is particularly challenging because of the wide variety of noise sources and the non-stationarity of speech and noise. Digital signal processing (DSP) algorithms deployed in modern hearing aids for noise reduction rely on certain assumptions on the statistical properties of undesired signals. This could be disadvantageous in accurate estimation of different noise types, which subsequently leads to suboptimal noise reduction. In this research, a relatively unexplored technique based on deep learning, i.e. Recurrent Neural Network (RNN), is used to perform noise reduction and dereverberation for assisting hearing-impaired listeners. For noise reduction, the performance of the deep learning model was evaluated objectively and compared with that of open Master Hearing Aid (openMHA), a conventional signal processing based framework, and a Deep Neural Network (DNN) based model. It was found that the RNN model can suppress noise and improve speech understanding better than the conventional hearing aid noise reduction algorithm and the DNN model. The same RNN model was shown to reduce reverberation components with proper training. A real-time implementation of the deep learning model is also discussed

    Towards An Intelligent Fuzzy Based Multimodal Two Stage Speech Enhancement System

    Get PDF
    This thesis presents a novel two stage multimodal speech enhancement system, making use of both visual and audio information to filter speech, and explores the extension of this system with the use of fuzzy logic to demonstrate proof of concept for an envisaged autonomous, adaptive, and context aware multimodal system. The design of the proposed cognitively inspired framework is scalable, meaning that it is possible for the techniques used in individual parts of the system to be upgraded and there is scope for the initial framework presented here to be expanded. In the proposed system, the concept of single modality two stage filtering is extended to include the visual modality. Noisy speech information received by a microphone array is first pre-processed by visually derived Wiener filtering employing the novel use of the Gaussian Mixture Regression (GMR) technique, making use of associated visual speech information, extracted using a state of the art Semi Adaptive Appearance Models (SAAM) based lip tracking approach. This pre-processed speech is then enhanced further by audio only beamforming using a state of the art Transfer Function Generalised Sidelobe Canceller (TFGSC) approach. This results in a system which is designed to function in challenging noisy speech environments (using speech sentences with different speakers from the GRID corpus and a range of noise recordings), and both objective and subjective test results (employing the widely used Perceptual Evaluation of Speech Quality (PESQ) measure, a composite objective measure, and subjective listening tests), showing that this initial system is capable of delivering very encouraging results with regard to filtering speech mixtures in difficult reverberant speech environments. Some limitations of this initial framework are identified, and the extension of this multimodal system is explored, with the development of a fuzzy logic based framework and a proof of concept demonstration implemented. Results show that this proposed autonomous,adaptive, and context aware multimodal framework is capable of delivering very positive results in difficult noisy speech environments, with cognitively inspired use of audio and visual information, depending on environmental conditions. Finally some concluding remarks are made along with proposals for future work

    Speech analysis for Ambient Assisted Living : technical and user design of a vocal order system

    No full text
    International audienceEvolution of ICT led to the emergence of smart home. A Smart Home consists in a home equipped with data-processing technology which anticipates the needs of its inhabitant while trying to maintain their comfort and their safety by action on the house and by implementing connections with the outside world. Therefore, smart homes equipped with ambient intelligence technology constitute a promising direction to enable the growing number of elderly to continue to live in their own homes as long as possible. However, the technological solutions requested by this part of the population have to suit their specific needs and capabilities. It is obvious that these Smart Houses tend to be equipped with devices whose interfaces are increasingly complex and become difficult to control by the user. The people the most likely to benefit from these new technologies are the people in loss of autonomy such as the disabled people or the elderly which cognitive deficiencies (Alzheimer). Moreover, these people are the less capable of using the complex interfaces due to their handicap or their lack ICT understanding. Thus, it becomes essential to facilitate the daily life and the access to the whole home automation system through the smart home. The usual tactile interfaces should be supplemented by accessible interfaces, in particular, thanks to a system reactive to the voice ; these interfaces are also useful when the person cannot move easily. Vocal orders will allow the following functionality: - To ensure an assistance by a traditional or vocal order. - To set up a indirect order regulation for a better energy management. - To reinforce the link with the relatives by the integration of interfaces dedicated and adapted to the person in loss of autonomy. - To ensure more safety by detection of distress situations and when someone is breaking in the house. This chapter will describe the different steps which are needed for the conception of an audio ambient system. The first step is related to the acceptability and the objection aspects by the end users and we will report a user evaluation assessing the acceptance and the fear of this new technology. The experience aimed at testing three important aspects of speech interaction: voice command, communication with the outside world, home automation system interrupting a person's activity. The experiment was conducted in a smart home with a voice command using a Wizard of OZ technique and gave information of great interest. The second step is related to a general presentation of the audio sensing technology for ambient assisted living. Different aspect of sound and speech processing will be developed. The applications and challenges will be presented. The third step is related to speech recognition in the home environment. Automatic Speech Recognition systems (ASR) have reached good performances with close talking microphones (e.g., head-set), but the performances decrease significantly as soon as the microphone is moved away from the mouth of the speaker (e.g., when the microphone is set in the ceiling). This deterioration is due to a broad variety of effects including reverberation and presence of undetermined background noise such as TV radio and, devices. This part will present a system of vocal order recognition in distant speech context. This system was evaluated in a dedicated flat thanks to some experiments. This chapter will then conclude with a discussion on the interest of the speech modality concerning the Ambient Assisted Living
    • …
    corecore