5,462 research outputs found

    AER Neuro-Inspired interface to Anthropomorphic Robotic Hand

    Get PDF
    Address-Event-Representation (AER) is a communication protocol for transferring asynchronous events between VLSI chips, originally developed for neuro-inspired processing systems (for example, image processing). Such systems may consist of a complicated hierarchical structure with many chips that transmit data among them in real time, while performing some processing (for example, convolutions). The information transmitted is a sequence of spikes coded using high speed digital buses. These multi-layer and multi-chip AER systems perform actually not only image processing, but also audio processing, filtering, learning, locomotion, etc. This paper present an AER interface for controlling an anthropomorphic robotic hand with a neuro-inspired system.Unión Europea IST-2001-34124 (CAVIAR)Ministerio de Ciencia y Tecnología TIC-2003-08164-C03-02Ministerio de Ciencia y Tecnología TIC2000-0406-P4- 0

    More Than a Feeling: Learning to Grasp and Regrasp using Vision and Touch

    Full text link
    For humans, the process of grasping an object relies heavily on rich tactile feedback. Most recent robotic grasping work, however, has been based only on visual input, and thus cannot easily benefit from feedback after initiating contact. In this paper, we investigate how a robot can learn to use tactile information to iteratively and efficiently adjust its grasp. To this end, we propose an end-to-end action-conditional model that learns regrasping policies from raw visuo-tactile data. This model -- a deep, multimodal convolutional network -- predicts the outcome of a candidate grasp adjustment, and then executes a grasp by iteratively selecting the most promising actions. Our approach requires neither calibration of the tactile sensors, nor any analytical modeling of contact forces, thus reducing the engineering effort required to obtain efficient grasping policies. We train our model with data from about 6,450 grasping trials on a two-finger gripper equipped with GelSight high-resolution tactile sensors on each finger. Across extensive experiments, our approach outperforms a variety of baselines at (i) estimating grasp adjustment outcomes, (ii) selecting efficient grasp adjustments for quick grasping, and (iii) reducing the amount of force applied at the fingers, while maintaining competitive performance. Finally, we study the choices made by our model and show that it has successfully acquired useful and interpretable grasping behaviors.Comment: 8 pages. Published on IEEE Robotics and Automation Letters (RAL). Website: https://sites.google.com/view/more-than-a-feelin

    Learning Latent Space Dynamics for Tactile Servoing

    Full text link
    To achieve a dexterous robotic manipulation, we need to endow our robot with tactile feedback capability, i.e. the ability to drive action based on tactile sensing. In this paper, we specifically address the challenge of tactile servoing, i.e. given the current tactile sensing and a target/goal tactile sensing --memorized from a successful task execution in the past-- what is the action that will bring the current tactile sensing to move closer towards the target tactile sensing at the next time step. We develop a data-driven approach to acquire a dynamics model for tactile servoing by learning from demonstration. Moreover, our method represents the tactile sensing information as to lie on a surface --or a 2D manifold-- and perform a manifold learning, making it applicable to any tactile skin geometry. We evaluate our method on a contact point tracking task using a robot equipped with a tactile finger. A video demonstrating our approach can be seen in https://youtu.be/0QK0-Vx7WkIComment: Accepted to be published at the International Conference on Robotics and Automation (ICRA) 2019. The final version for publication at ICRA 2019 is 7 pages (i.e. 6 pages of technical content (including text, figures, tables, acknowledgement, etc.) and 1 page of the Bibliography/References), while this arXiv version is 8 pages (added Appendix and some extra details

    Active Clothing Material Perception using Tactile Sensing and Deep Learning

    Full text link
    Humans represent and discriminate the objects in the same category using their properties, and an intelligent robot should be able to do the same. In this paper, we build a robot system that can autonomously perceive the object properties through touch. We work on the common object category of clothing. The robot moves under the guidance of an external Kinect sensor, and squeezes the clothes with a GelSight tactile sensor, then it recognizes the 11 properties of the clothing according to the tactile data. Those properties include the physical properties, like thickness, fuzziness, softness and durability, and semantic properties, like wearing season and preferred washing methods. We collect a dataset of 153 varied pieces of clothes, and conduct 6616 robot exploring iterations on them. To extract the useful information from the high-dimensional sensory output, we applied Convolutional Neural Networks (CNN) on the tactile data for recognizing the clothing properties, and on the Kinect depth images for selecting exploration locations. Experiments show that using the trained neural networks, the robot can autonomously explore the unknown clothes and learn their properties. This work proposes a new framework for active tactile perception system with vision-touch system, and has potential to enable robots to help humans with varied clothing related housework.Comment: ICRA 2018 accepte

    Seven properties of self-organization in the human brain

    Get PDF
    The principle of self-organization has acquired a fundamental significance in the newly emerging field of computational philosophy. Self-organizing systems have been described in various domains in science and philosophy including physics, neuroscience, biology and medicine, ecology, and sociology. While system architecture and their general purpose may depend on domain-specific concepts and definitions, there are (at least) seven key properties of self-organization clearly identified in brain systems: 1) modular connectivity, 2) unsupervised learning, 3) adaptive ability, 4) functional resiliency, 5) functional plasticity, 6) from-local-to-global functional organization, and 7) dynamic system growth. These are defined here in the light of insight from neurobiology, cognitive neuroscience and Adaptive Resonance Theory (ART), and physics to show that self-organization achieves stability and functional plasticity while minimizing structural system complexity. A specific example informed by empirical research is discussed to illustrate how modularity, adaptive learning, and dynamic network growth enable stable yet plastic somatosensory representation for human grip force control. Implications for the design of “strong” artificial intelligence in robotics are brought forward
    corecore