5 research outputs found

    A survey on rainfall forecasting using artificial neural network

    Get PDF
    Rainfall has a great impact on agriculture and people’s daily travel, so accurate prediction of precipitation is well worth studying for researchers. Traditional methods like numerical weather prediction (NWP) models or statistical models can’t provide satisfied effect of rainfall forecasting because of nonlinear and dynamic characteristics of precipitation. However, artificial neural network (ANN) has an ability to obtain complicated nonlinear relationship between variables, which is suitable to predict precipitation. This paper mainly introduces background knowledge of ANN and several algorithms using neural network applied to precipitation prediction in recent years. It is proved that neural network can greatly improve the accuracy and efficiency of prediction

    Forecasting of Medium-term Rainfall Using Artificial Neural Networks: Case Studies from Eastern Australia

    Get PDF
    The advent of machine learning, of which artificial neural networks (ANN) are a component, has provided an opportunity for improved rainfall forecasts, which is of value for water infrastructure management, agriculture, mining and other industries. In this chapter, ANNs are shown to provide more skillful monthly rainfall forecasts for locations in south-eastern Queensland, Australia, for lead-times of 3–12 months. The skill of the forecasts from the ANNs is highest when the models are individually optimized for each month, and when longer-duration series are used as input. The ANN technique has application where there is temperature and rainfall data extending back at least 50 years. Such datasets exist for much of Europe and North America, though a review of the available literature indicates most research into the application of ANN has focused on China, India and Australia

    Geo-physical parameter forecasting on imagery{based data sets using machine learning techniques

    Get PDF
    >Magister Scientiae - MScThis research objectively investigates the e ectiveness of machine learning (ML) tools towards predicting several geo-physical parameters. This is based on a large number of studies that have reported high levels of prediction success using ML in the eld. Therefore, several widely used ML tools coupled with a number of di erent feature sets are used to predict six geophysical parameters namely rainfall, groundwater, evapora- tion, humidity, temperature, and wind. The results of the research indicate that: a) a large number of related studies in the eld are prone to speci c pitfalls that lead to over-estimated results in favour of ML tools; b) the use of gaussian mixture models as global features can provide a higher accuracy compared to other local feature sets; c) ML never outperform simple statistically-based estimators on highly-seasonal parame- ters, and providing error bars is key to objectively evaluating the relative performance of the ML tools used; and d) ML tools can be e ective for parameters that are slow- changing such as groundwater

    A new rainfall forecasting model using the CAPSO algorithm and an artificial neural network

    No full text
    Artificial neural networks (ANNs) are being used increasingly to forecast rainfall. In this study, several meta-heuristic algorithms are applied to train an ANN in order to improve the accuracy of rainfall forecasting. Centripetal accelerated particle swarm optimization (CAPSO), a gravitational search algorithm and an imperialist competitive algorithm train a multilayer perceptron (MLP) network as a feed-forward ANN for rainfall forecasting in Johor State, Malaysia. They are employed to forecast the average monthly rainfall in the next 5 and 10 years using the two modes of original (without data preprocessing) and data preprocessing with singular spectrum analysis. Additionally, for each month, the average monthly rainfall during the last 5 years is computed and a month with less rainfall than the average is classified as 0 (light rainfall month), otherwise as 1 (heavy rainfall month). The attributes used in the classification can be applied to forecast the monthly rainfall. The proposed methods integrate the accuracy and structure of ANN simultaneously. The result showed that the hybrid learning of MLP with the CAPSO algorithm provided higher rainfall forecasting accuracy, lower error and higher classification accuracy. One of the main advantages of CAPSO compared with the other algorithms to train MLP includes the following: The algorithm has no need to tune any algorithmic parameter and it shows good performance on unseen data (testing data)
    corecore