171,581 research outputs found

    A theory of cross-validation error

    Get PDF
    This paper presents a theory of error in cross-validation testing of algorithms for predicting real-valued attributes. The theory justifies the claim that predicting real-valued attributes requires balancing the conflicting demands of simplicity and accuracy. Furthermore, the theory indicates precisely how these conflicting demands must be balanced, in order to minimize cross-validation error. A general theory is presented, then it is developed in detail for linear regression and instance-based learning

    Convex Optimization In Identification Of Stable Non-Linear State Space Models

    Full text link
    A new framework for nonlinear system identification is presented in terms of optimal fitting of stable nonlinear state space equations to input/output/state data, with a performance objective defined as a measure of robustness of the simulation error with respect to equation errors. Basic definitions and analytical results are presented. The utility of the method is illustrated on a simple simulation example as well as experimental recordings from a live neuron.Comment: 9 pages, 2 figure, elaboration of same-title paper in 49th IEEE Conference on Decision and Contro

    Characterizing the stabilization size for semi-implicit Fourier-spectral method to phase field equations

    Full text link
    Recent results in the literature provide computational evidence that stabilized semi-implicit time-stepping method can efficiently simulate phase field problems involving fourth-order nonlinear dif- fusion, with typical examples like the Cahn-Hilliard equation and the thin film type equation. The up-to-date theoretical explanation of the numerical stability relies on the assumption that the deriva- tive of the nonlinear potential function satisfies a Lipschitz type condition, which in a rigorous sense, implies the boundedness of the numerical solution. In this work we remove the Lipschitz assumption on the nonlinearity and prove unconditional energy stability for the stabilized semi-implicit time-stepping methods. It is shown that the size of stabilization term depends on the initial energy and the perturba- tion parameter but is independent of the time step. The corresponding error analysis is also established under minimal nonlinearity and regularity assumptions

    Evaluation of stochastic effects on biomolecular networks using the generalised Nyquist stability criterion

    Get PDF
    Abstract—Stochastic differential equations are now commonly used to model biomolecular networks in systems biology, and much recent research has been devoted to the development of methods to analyse their stability properties. Stability analysis of such systems may be performed using the Laplace transform, which requires the calculation of the exponential matrix involving time symbolically. However, the calculation of the symbolic exponential matrix is not feasible for problems of even moderate size, as the required computation time increases exponentially with the matrix order. To address this issue, we present a novel method for approximating the Laplace transform which does not require the exponential matrix to be calculated explicitly. The calculation time associated with the proposed method does not increase exponentially with the size of the system, and the approximation error is shown to be of the same order as existing methods. Using this approximation method, we show how a straightforward application of the generalized Nyquist stability criterion provides necessary and sufficient conditions for the stability of stochastic biomolecular networks. The usefulness and computational efficiency of the proposed method is illustrated through its application to the problem of analysing a model for limit-cycle oscillations in cAMP during aggregation of Dictyostelium cells

    A regime of linear stability for the Einstein-scalar field system with applications to nonlinear Big Bang formation

    Get PDF
    We linearize the Einstein-scalar field equations, expressed relative to constant mean curvature (CMC)-transported spatial coordinates gauge, around members of the well-known family of Kasner solutions on (0,)×T3(0,\infty) \times \mathbb{T}^3. The Kasner solutions model a spatially uniform scalar field evolving in a (typically) spatially anisotropic spacetime that expands towards the future and that has a "Big Bang" singularity at {t=0}\lbrace t = 0 \rbrace. We place initial data for the linearized system along {t=1}T3\lbrace t = 1 \rbrace \simeq \mathbb{T}^3 and study the linear solution's behavior in the collapsing direction t0t \downarrow 0. Our first main result is the proof of an approximate L2L^2 monotonicity identity for the linear solutions. Using it, we prove a linear stability result that holds when the background Kasner solution is sufficiently close to the Friedmann-Lema\^{\i}tre-Robertson-Walker (FLRW) solution. In particular, we show that as t0t \downarrow 0, various time-rescaled components of the linear solution converge to regular functions defined along {t=0}\lbrace t = 0 \rbrace. In addition, we motivate the preferred direction of the approximate monotonicity by showing that the CMC-transported spatial coordinates gauge can be viewed as a limiting version of a family of parabolic gauges for the lapse variable; an approximate monotonicity identity and corresponding linear stability results also hold in the parabolic gauges, but the corresponding parabolic PDEs are locally well-posed only in the direction t0t \downarrow 0. Finally, based on the linear stability results, we outline a proof of the following result, whose complete proof will appear elsewhere: the FLRW solution is globally nonlinearly stable in the collapsing direction t0t \downarrow 0 under small perturbations of its data at {t=1}\lbrace t = 1 \rbrace.Comment: 73 page
    corecore