317 research outputs found

    On the stability of solution mapping for parametric generalized vector quasiequilibrium problems

    Get PDF
    AbstractIn this paper, we study the solution stability for a class of parametric generalized vector quasiequilibrium problems. By virtue of the parametric gap function, we obtain a sufficient and necessary condition for the Hausdorff lower semicontinuity of the solution mapping to the parametric generalized vector quasiequilibrium problem. The results presented in this paper generalize and improve some main results of Chen et al. (2010) [34], and Zhong and Huang (2011) [35]

    Including Social Nash Equilibria in Abstract Economies

    Get PDF
    We consider quasi-variational problems (variational problems having constraint sets depending on their own solutions) which appear in concrete economic models such as social and economic networks, financial derivative models, transportation network congestion and traffic equilibrium. First, using an extension of the classical Minty lemma, we show that new upper stability results can be obtained for parametric quasi-variational and linearized quasi-variational problems, while lower stability, which plays a fundamental role in the investigation of hierarchical problems, cannot be achieved in general, even on very restrictive conditions. Then, regularized problems are considered allowing to introduce approximate solutions for the above problems and to investigate their lower and upper stability properties. We stress that the class of quasi-variational problems include social Nash equilibrium problems in abstract economies, so results about approximate Nash equilibria can be easily deduced.quasi-variational, social Nash equilibria, approximate solution, closed map, lower semicontinuous map, upper stability, lower stability

    Continuity of the Solution Maps for Generalized Parametric Set-Valued Ky Fan Inequality Problems

    Get PDF
    Under new assumptions, we provide suffcient conditions for the (upper and lower) semicontinuity and continuity of the solution mappings to a class of generalized parametric set-valued Ky Fan inequality problems in linear metric space. These results extend and improve some known results in the literature (e.g., Gong, 2008; Gong and Yoa, 2008; Chen and Gong, 2010; Li and Fang, 2010). Some examples are given to illustrate our results

    Counterfactual Sensitivity and Robustness

    Full text link
    Researchers frequently make parametric assumptions about the distribution of unobservables when formulating structural models. Such assumptions are typically motived by computational convenience rather than economic theory and are often untestable. Counterfactuals can be particularly sensitive to such assumptions, threatening the credibility of structural modeling exercises. To address this issue, we leverage insights from the literature on ambiguity and model uncertainty to propose a tractable econometric framework for characterizing the sensitivity of counterfactuals with respect to a researcher's assumptions about the distribution of unobservables in a class of structural models. In particular, we show how to construct the smallest and largest values of the counterfactual as the distribution of unobservables spans nonparametric neighborhoods of the researcher's assumed specification while other `structural' features of the model, e.g. equilibrium conditions, are maintained. Our methods are computationally simple to implement, with the nuisance distribution effectively profiled out via a low-dimensional convex program. Our procedure delivers sharp bounds for the identified set of counterfactuals (i.e. without parametric assumptions about the distribution of unobservables) as the neighborhoods become large. Over small neighborhoods, we relate our procedure to a measure of local sensitivity which is further characterized using an influence function representation. We provide a suitable sampling theory for plug-in estimators and apply our procedure to models of strategic interaction and dynamic discrete choice

    KKT reformulation and necessary conditions for optimality in nonsmooth bilevel optimization

    No full text
    For a long time, the bilevel programming problem has essentially been considered as a special case of mathematical programs with equilibrium constraints (MPECs), in particular when the so-called KKT reformulation is in question. Recently though, this widespread believe was shown to be false in general. In this paper, other aspects of the difference between both problems are revealed as we consider the KKT approach for the nonsmooth bilevel program. It turns out that the new inclusion (constraint) which appears as a consequence of the partial subdifferential of the lower-level Lagrangian (PSLLL) places the KKT reformulation of the nonsmooth bilevel program in a new class of mathematical program with both set-valued and complementarity constraints. While highlighting some new features of this problem, we attempt here to establish close links with the standard optimistic bilevel program. Moreover, we discuss possible natural extensions for C-, M-, and S-stationarity concepts. Most of the results rely on a coderivative estimate for the PSLLL that we also provide in this paper

    Characterizations of long-run producer optima and the short-runapproach to long-run market equilibrium: a general theory withapplications to peak-load pricing

    Get PDF
    This is a new formal framework for the theory of competitive equilibrium and its applications.Our "short-run approach" means the calculation of long-run producer optimaand general equilibria from the short-run solutions to the producer's profit maximizationprogramme and its dual. The marginal interpretation of the dual solution means that itcan be used to value the capital and other fixed inputs, whose levels are then adjustedaccordingly (where possible). But short-run profit can be a nondifferentiable function ofthe fixed quantities, and the short-run cost is nondifferentiable whenever there is a rigidcapacity constraint. Nondifferentiability of the optimal value requires the introductionof nonsmooth calculus into equilibrium analysis, and subdifferential generalizations ofsmooth-calculus results of microeconomics are given, including the key Wong-Viner EnvelopeTheorem. This resolves long-standing discrepancies between "textbook theory"and industrial experience. The other tool employed to characterise long-run produceroptima is a primal-dual pair of programmes. Both marginalist and programming characterizationsof producer optima are given in a taxonomy of seventeen equivalent systemsof conditions. When the technology is described by production sets, the most usefulsystem for the short-run approach is that using the short-run profit programme andits dual. This programme pair is employed to set up a formal framework for long-rungeneral-equilibrium pricing of a range of commodities with joint costs of production.This gives a practical method that finds the short-run general equilibrium en route tothe long-run equilibrium, exploiting the operating policies and plant valuations that mustbe determined anyway. These critical short-run solutions have relatively simple formsthat can greatly ease the fixed-point problem of solving for equilibrium, as is shownon an electricity pricing example. Applicable criteria are given for the existence of theshort-run solutions and for the absence of a duality gap. The general analysis is speltout for technologies with conditionally fixed coefficients, a concept extending that of thefixed-coefficients production function to the case of multiple outputs. The short-run approachis applied to the peak-load pricing of electricity generated by thermal, hydro andpumped-storage plants. This gives, for the first time, a sound method of valuing thefixed assets-in this case, river flows and the sites suitable for reservoirs.general equilibrium, fixed-input valuation, nondifferentiable joint costs,Wong-Viner Envelope Theorem, public utility pricing
    corecore