1,312 research outputs found

    Group Testing with Probabilistic Tests: Theory, Design and Application

    Get PDF
    Identification of defective members of large populations has been widely studied in the statistics community under the name of group testing. It involves grouping subsets of items into different pools and detecting defective members based on the set of test results obtained for each pool. In a classical noiseless group testing setup, it is assumed that the sampling procedure is fully known to the reconstruction algorithm, in the sense that the existence of a defective member in a pool results in the test outcome of that pool to be positive. However, this may not be always a valid assumption in some cases of interest. In particular, we consider the case where the defective items in a pool can become independently inactive with a certain probability. Hence, one may obtain a negative test result in a pool despite containing some defective items. As a result, any sampling and reconstruction method should be able to cope with two different types of uncertainty, i.e., the unknown set of defective items and the partially unknown, probabilistic testing procedure. In this work, motivated by the application of detecting infected people in viral epidemics, we design non-adaptive sampling procedures that allow successful identification of the defective items through a set of probabilistic tests. Our design requires only a small number of tests to single out the defective items. In particular, for a population of size NN and at most KK defective items with activation probability pp, our results show that M=O(K2log(N/K)/p3)M = O(K^2\log{(N/K)}/p^3) tests is sufficient if the sampling procedure should work for all possible sets of defective items, while M=O(Klog(N)/p3)M = O(K\log{(N)}/p^3) tests is enough to be successful for any single set of defective items. Moreover, we show that the defective members can be recovered using a simple reconstruction algorithm with complexity of O(MN)O(MN).Comment: Full version of the conference paper "Compressed Sensing with Probabilistic Measurements: A Group Testing Solution" appearing in proceedings of the 47th Annual Allerton Conference on Communication, Control, and Computing, 2009 (arXiv:0909.3508). To appear in IEEE Transactions on Information Theor

    Non-adaptive pooling strategies for detection of rare faulty items

    Full text link
    We study non-adaptive pooling strategies for detection of rare faulty items. Given a binary sparse N-dimensional signal x, how to construct a sparse binary MxN pooling matrix F such that the signal can be reconstructed from the smallest possible number M of measurements y=Fx? We show that a very low number of measurements is possible for random spatially coupled design of pools F. Our design might find application in genetic screening or compressed genotyping. We show that our results are robust with respect to the uncertainty in the matrix F when some elements are mistaken.Comment: 5 page

    Compressed Genotyping

    Full text link
    Significant volumes of knowledge have been accumulated in recent years linking subtle genetic variations to a wide variety of medical disorders from Cystic Fibrosis to mental retardation. Nevertheless, there are still great challenges in applying this knowledge routinely in the clinic, largely due to the relatively tedious and expensive process of DNA sequencing. Since the genetic polymorphisms that underlie these disorders are relatively rare in the human population, the presence or absence of a disease-linked polymorphism can be thought of as a sparse signal. Using methods and ideas from compressed sensing and group testing, we have developed a cost-effective genotyping protocol. In particular, we have adapted our scheme to a recently developed class of high throughput DNA sequencing technologies, and assembled a mathematical framework that has some important distinctions from 'traditional' compressed sensing ideas in order to address different biological and technical constraints.Comment: Submitted to IEEE Transaction on Information Theory - Special Issue on Molecular Biology and Neuroscienc

    Boolean Compressed Sensing and Noisy Group Testing

    Full text link
    The fundamental task of group testing is to recover a small distinguished subset of items from a large population while efficiently reducing the total number of tests (measurements). The key contribution of this paper is in adopting a new information-theoretic perspective on group testing problems. We formulate the group testing problem as a channel coding/decoding problem and derive a single-letter characterization for the total number of tests used to identify the defective set. Although the focus of this paper is primarily on group testing, our main result is generally applicable to other compressive sensing models. The single letter characterization is shown to be order-wise tight for many interesting noisy group testing scenarios. Specifically, we consider an additive Bernoulli(qq) noise model where we show that, for NN items and KK defectives, the number of tests TT is O(KlogN1q)O(\frac{K\log N}{1-q}) for arbitrarily small average error probability and O(K2logN1q)O(\frac{K^2\log N}{1-q}) for a worst case error criterion. We also consider dilution effects whereby a defective item in a positive pool might get diluted with probability uu and potentially missed. In this case, it is shown that TT is O(KlogN(1u)2)O(\frac{K\log N}{(1-u)^2}) and O(K2logN(1u)2)O(\frac{K^2\log N}{(1-u)^2}) for the average and the worst case error criteria, respectively. Furthermore, our bounds allow us to verify existing known bounds for noiseless group testing including the deterministic noise-free case and approximate reconstruction with bounded distortion. Our proof of achievability is based on random coding and the analysis of a Maximum Likelihood Detector, and our information theoretic lower bound is based on Fano's inequality.Comment: In this revision: reorganized the paper, added citations to related work, and fixed some bug

    On Finding a Subset of Healthy Individuals from a Large Population

    Full text link
    In this paper, we derive mutual information based upper and lower bounds on the number of nonadaptive group tests required to identify a given number of "non defective" items from a large population containing a small number of "defective" items. We show that a reduction in the number of tests is achievable compared to the approach of first identifying all the defective items and then picking the required number of non-defective items from the complement set. In the asymptotic regime with the population size NN \rightarrow \infty, to identify LL non-defective items out of a population containing KK defective items, when the tests are reliable, our results show that CsK1o(1)(Φ(α0,β0)+o(1))\frac{C_s K}{1-o(1)} (\Phi(\alpha_0, \beta_0) + o(1)) measurements are sufficient, where CsC_s is a constant independent of N,KN, K and LL, and Φ(α0,β0)\Phi(\alpha_0, \beta_0) is a bounded function of α0limNLNK\alpha_0 \triangleq \lim_{N\rightarrow \infty} \frac{L}{N-K} and β0limNKNK\beta_0 \triangleq \lim_{N\rightarrow \infty} \frac{K} {N-K}. Further, in the nonadaptive group testing setup, we obtain rigorous upper and lower bounds on the number of tests under both dilution and additive noise models. Our results are derived using a general sparse signal model, by virtue of which, they are also applicable to other important sparse signal based applications such as compressive sensing.Comment: 32 pages, 2 figures, 3 tables, revised version of a paper submitted to IEEE Trans. Inf. Theor

    Compressed Sensing with Probabilistic Measurements: A Group Testing Solution

    Get PDF
    Detection of defective members of large populations has been widely studied in the statistics community under the name "group testing", a problem which dates back to World War II when it was suggested for syphilis screening. There the main interest is to identify a small number of infected people among a large population using collective samples. In viral epidemics, one way to acquire collective samples is by sending agents inside the population. While in classical group testing, it is assumed that the sampling procedure is fully known to the reconstruction algorithm, in this work we assume that the decoder possesses only partial knowledge about the sampling process. This assumption is justified by observing the fact that in a viral sickness, there is a chance that an agent remains healthy despite having contact with an infected person. Therefore, the reconstruction method has to cope with two different types of uncertainty; namely, identification of the infected population and the partially unknown sampling procedure. In this work, by using a natural probabilistic model for "viral infections", we design non-adaptive sampling procedures that allow successful identification of the infected population with overwhelming probability 1-o(1). We propose both probabilistic and explicit design procedures that require a "small" number of agents to single out the infected individuals. More precisely, for a contamination probability p, the number of agents required by the probabilistic and explicit designs for identification of up to k infected members is bounded by m = O(k^2 (log n)/p^2) and m = O(k^2 (log n)^2 /p^2), respectively. In both cases, a simple decoder is able to successfully identify the infected population in time O(mn).Comment: In Proceedings of the Forty-Seventh Annual Allerton Conference on Communication, Control, and Computin
    corecore