22,976 research outputs found

    VolumeEVM: A new surface/volume integrated model

    Get PDF
    Volume visualization is a very active research area in the field of scien-tific visualization. The Extreme Vertices Model (EVM) has proven to be a complete intermediate model to visualize and manipulate volume data using a surface rendering approach. However, the ability to integrate the advantages of surface rendering approach with the superiority in visual exploration of the volume rendering would actually produce a very complete visualization and edition system for volume data. Therefore, we decided to define an enhanced EVM-based model which incorporates the volumetric information required to achieved a nearly direct volume visualization technique. Thus, VolumeEVM was designed maintaining the same EVM-based data structure plus a sorted list of density values corresponding to the EVM-based VoIs interior voxels. A function which relates interior voxels of the EVM with the set of densities was mandatory to be defined. This report presents the definition of this new surface/volume integrated model based on the well known EVM encoding and propose implementations of the main software-based direct volume rendering techniques through the proposed model.Postprint (published version

    Web-Based Visualization of Very Large Scientific Astronomy Imagery

    Full text link
    Visualizing and navigating through large astronomy images from a remote location with current astronomy display tools can be a frustrating experience in terms of speed and ergonomics, especially on mobile devices. In this paper, we present a high performance, versatile and robust client-server system for remote visualization and analysis of extremely large scientific images. Applications of this work include survey image quality control, interactive data query and exploration, citizen science, as well as public outreach. The proposed software is entirely open source and is designed to be generic and applicable to a variety of datasets. It provides access to floating point data at terabyte scales, with the ability to precisely adjust image settings in real-time. The proposed clients are light-weight, platform-independent web applications built on standard HTML5 web technologies and compatible with both touch and mouse-based devices. We put the system to the test and assess the performance of the system and show that a single server can comfortably handle more than a hundred simultaneous users accessing full precision 32 bit astronomy data.Comment: Published in Astronomy & Computing. IIPImage server available from http://iipimage.sourceforge.net . Visiomatic code and demos available from http://www.visiomatic.org

    Uncertain Flow Visualization using LIC

    Get PDF
    In this paper we look at the Line Integral Convolution method for flow visualization and ways in which this can be applied to the visualization of two dimensional, steady flow fields in the presence of uncertainty. To achieve this, we start by studying the method and reviewing the history of modifications other authors have made to it in order to improve its efficiency or capabilities, and using these as a base for the visualization of uncertain flow fields. Finally, we apply our methodology to a case study from the field of oceanography
    • …
    corecore