2,044 research outputs found

    Vowel Production in Mandarin Accented English and American English: Kinematic and Acoustic Data from the Marquette University Mandarin Accented English Corpus

    Get PDF
    Few electromagnetic articulography (EMA) datasets are publicly available, and none have focused systematically on non-native accented speech. We introduce a kinematic-acoustic database of speech from 40 (gender and dialect balanced) participants producing upper-Midwestern American English (AE) L1 or Mandarin Accented English (MAE) L2 (Beijing or Shanghai dialect base). The Marquette University EMA-MAE corpus will be released publicly to help advance research in areas such as pronunciation modeling, acoustic-articulatory inversion, L1-L2 comparisons, pronunciation error detection, and accent modification training. EMA data were collected at a 400 Hz sampling rate with synchronous audio using the NDI Wave System. Articulatory sensors were placed on the midsagittal lips, lower incisors, and tongue blade and dorsum, as well as on the lip corner and lateral tongue body. Sensors provide five degree-of-freedom measurements including three-dimensional sensor position and two-dimensional orientation (pitch and roll). In the current work we analyze kinematic and acoustic variability between L1 and L2 vowels. We address the hypothesis that MAE is characterized by larger differences in the articulation of back vowels than front vowels and smaller vowel spaces compared to AE. The current results provide a seminal comparison of the kinematics and acoustics of vowel production between MAE and AE speakers

    Advances in Joint CTC-Attention based End-to-End Speech Recognition with a Deep CNN Encoder and RNN-LM

    Full text link
    We present a state-of-the-art end-to-end Automatic Speech Recognition (ASR) model. We learn to listen and write characters with a joint Connectionist Temporal Classification (CTC) and attention-based encoder-decoder network. The encoder is a deep Convolutional Neural Network (CNN) based on the VGG network. The CTC network sits on top of the encoder and is jointly trained with the attention-based decoder. During the beam search process, we combine the CTC predictions, the attention-based decoder predictions and a separately trained LSTM language model. We achieve a 5-10\% error reduction compared to prior systems on spontaneous Japanese and Chinese speech, and our end-to-end model beats out traditional hybrid ASR systems.Comment: Accepted for INTERSPEECH 201

    The phonetics of second language learning and bilingualism

    Get PDF
    This chapter provides an overview of major theories and findings in the field of second language (L2) phonetics and phonology. Four main conceptual frameworks are discussed and compared: the Perceptual Assimilation Model-L2, the Native Language Magnet Theory, the Automatic Selection Perception Model, and the Speech Learning Model. These frameworks differ in terms of their empirical focus, including the type of learner (e.g., beginner vs. advanced) and target modality (e.g., perception vs. production), and in terms of their theoretical assumptions, such as the basic unit or window of analysis that is relevant (e.g., articulatory gestures, position-specific allophones). Despite the divergences among these theories, three recurring themes emerge from the literature reviewed. First, the learning of a target L2 structure (segment, prosodic pattern, etc.) is influenced by phonetic and/or phonological similarity to structures in the native language (L1). In particular, L1-L2 similarity exists at multiple levels and does not necessarily benefit L2 outcomes. Second, the role played by certain factors, such as acoustic phonetic similarity between close L1 and L2 sounds, changes over the course of learning, such that advanced learners may differ from novice learners with respect to the effect of a specific variable on observed L2 behavior. Third, the connection between L2 perception and production (insofar as the two are hypothesized to be linked) differs significantly from the perception-production links observed in L1 acquisition. In service of elucidating the predictive differences among these theories, this contribution discusses studies that have investigated L2 perception and/or production primarily at a segmental level. In addition to summarizing the areas in which there is broad consensus, the chapter points out a number of questions which remain a source of debate in the field today.https://drive.google.com/open?id=1uHX9K99Bl31vMZNRWL-YmU7O2p1tG2wHhttps://drive.google.com/open?id=1uHX9K99Bl31vMZNRWL-YmU7O2p1tG2wHhttps://drive.google.com/open?id=1uHX9K99Bl31vMZNRWL-YmU7O2p1tG2wHAccepted manuscriptAccepted manuscrip

    Analyzing Prosody with Legendre Polynomial Coefficients

    Full text link
    This investigation demonstrates the effectiveness of Legendre polynomial coefficients representing prosodic contours within the context of two different tasks: nativeness classification and sarcasm detection. By making use of accurate representations of prosodic contours to answer fundamental linguistic questions, we contribute significantly to the body of research focused on analyzing prosody in linguistics as well as modeling prosody for machine learning tasks. Using Legendre polynomial coefficient representations of prosodic contours, we answer prosodic questions about differences in prosody between native English speakers and non-native English speakers whose first language is Mandarin. We also learn more about prosodic qualities of sarcastic speech. We additionally perform machine learning classification for both tasks, (achieving an accuracy of 72.3% for nativeness classification, and achieving 81.57% for sarcasm detection). We recommend that linguists looking to analyze prosodic contours make use of Legendre polynomial coefficients modeling; the accuracy and quality of the resulting prosodic contour representations makes them highly interpretable for linguistic analysis
    • …
    corecore