17,247 research outputs found

    Antennas and Propagation of Implanted RFIDs for Pervasive Healthcare Applications

    Get PDF
    © 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.This post-acceptance version of the paper is essentially complete, but may differ from the official copy of record, which can be found at the following web location (subscription required to access full paper): http://dx.doi.org/10.1109/JPROC.2010.205101

    A Structured Literature Review

    Get PDF
    Publisher Copyright: © 2022 by the authors.A significant amount of research has been conducted on the resource allocation in fire departments (RAFD) and literature reviews about the fire protection service (FPS), but to the best of our knowledge, no literature reviews have been conducted about the RAFD. Therefore, the purpose of this research is to review literature about allocating resources to urban fire departments (FDs) to gain state-of-the-art knowledge of RAFD and identify the most frequent methodologies and measures in the studies. A five-stage structured literature review (SLR) is undertaken to analyze the RAFD-related studies; subsequently, statistical analysis is used to disclose additional information from the retrieved data and develop a general framework for RAFD. According to the structured literature review, which yielded 417 independent variables for RAFD, integer programming (IP) and data envelopment analysis (DEA) are the most common approaches for RAFD among the mathematical and statistical models in the evaluated articles. Based on the findings, a general conceptual framework for RAFD is suggested. The findings of this study can help public and private FDs and FPS managers, decision-makers, resource allocation (RA) researchers, and academicians gain state-of-the-art knowledge of RAFD. The proposed RAFD framework can provide the FPS decision-makers with the appropriate method and variables for allocating their limited resources in a more efficient way within their FDs.publishersversionpublishe

    Integrative Model for Quantitative Evaluation of Selection Telecommunication Tower Site

    Get PDF
    This paper analyzes the weight of impact factors on selection the antenna places for mobile telecommunication system in Jordan. The new technique plays a lead role in divided area and selects the place of antennas' sites. The main objective of this research is to minimize the antenna numbers in order to reduce the cost. Research follows flowcharting categories and stages as: The first stage aim to classify the effective factors on the: signal radius, better position of antenna from candidate points, reserved area, and non-preferring position. The second stage focuses on finding the effective weight of these factors on the decision. The third stage suggest the new proposed approach by implement the MCLP and P-center problems in linear function. The last stage has the pseudo code for the proposed approach, where the proposed approach provides the solution that helps the planners in telecommunication industry and in related government agencies make informed position of the antennas

    Localization method for low power consumption systems

    Get PDF
    Locating nodes is a fundamental problem in wireless networks with hundreds of devices deployed in a wide area. This is especially relevant for mobile nodes. Wireless sensor nodes are usually powered by small batteries, solar panels or piezoelectric generators, so that, and consequently, power consumption is the main constraint to deal with. But classic localization techniques do not consider the problem of energy consumption as a key point. This paper presents a novel low power and range-free localization technique based on distributed fuzzy logic and cooperative processing among a set of fixed nodes and its neighbours. This feature permits better accuracy with less power consumption than most relevant localization techniquesJunta de Andalucía P07-TIC-0247

    Hybrid Set Covering and Dynamic Modular Covering Location Problem: Application to an Emergency Humanitarian Logistics Problem

    Get PDF
    This paper presents an extension of the covering location problem as a hybrid covering model that utilizes the set covering and maximal covering location problems. The developed model is a multi-period model that considers strategic and tactical planning decisions. Hybrid covering location problem (HCLP) determines the location of the capacitated facilities by using dynamic set covering location problem as strategic decisions and assigns the constructive units of facilities and allocates the demand points by using dynamic modular capacitated maximal covering location problem as tactical decisions. One of the applications of the proposed model is locating first aid centers in humanitarian logistic services that have been addressed by studying a threat case study in Japan. In addition to validating the developed model, it has been compared to other possible combined problems, and several randomly generated examples have been solved. The results of the case study and model validation tests approve that the main hybrid developed model (HCLP) is capable of providing better coverage percentage compared to conventional covering models and other hybrid variants
    corecore