4,750 research outputs found

    A new parallel pipeline for DNA methylation analysis of long reads datasets.

    Get PDF
    BACKGROUND: DNA methylation is an important mechanism of epigenetic regulation in development and disease. New generation sequencers allow genome-wide measurements of the methylation status by reading short stretches of the DNA sequence (Methyl-seq). Several software tools for methylation analysis have been proposed over recent years. However, the current trend is that the new sequencers and the ones expected for an upcoming future yield sequences of increasing length, making these software tools inefficient and obsolete. RESULTS: In this paper, we propose a new software based on a strategy for methylation analysis of Methyl-seq sequencing data that requires much shorter execution times while yielding a better level of sensitivity, particularly for datasets composed of long reads. This strategy can be exported to other methylation, DNA and RNA analysis tools. CONCLUSIONS: The developed software tool achieves execution times one order of magnitude shorter than the existing tools, while yielding equal sensitivity for short reads and even better sensitivity for long reads

    Mining for viral fragments in methylation enriched sequencing data

    Get PDF
    Most next generation sequencing experiments generate more data than is required for the experimental set up. For example, methyl-CpG binding domain (MBD) affinity purification based sequencing is often used for DNA-methylation profiling, but up to 30% of the sequenced fragments cannot be mapped uniquely to the reference genome. Here we present and evaluate a methodology for the identification of viruses in these otherwise unused paired-end MBD-seq data. Viral detection is accomplished by mapping non-reference alignable reads to a comprehensive set of viral genomes. As viruses play an important role in epigenetics and cancer development, 92 (pre)malignant and benign samples, originating from two different collections of cervical samples and related cell lines, were used in this study. These samples include primary carcinomas (n=22), low- & high-grade cervical intrapeithelial neoplasia (CIN1 & CIN2/3 - n=2/n=30) and normal tissue (n=20), as well as control samples (n=17). Viruses that were detected include phages, adenoviruses, herpesviridae and HPV. HPV, which causes virtually all cervical cancers, was identified in 95% of the carcinomas, 100% of the CIN2/3 samples, both CIN1 samples and in 55% of the normal samples. Comparing the amount of mapped fragments on HPV for each HPV-infected sample yielded a significant difference between normal samples and carcinomas or CIN2/3 samples (adjusted p-values resp. < 10^-5, < 10^-5), reflecting different viral loads and/or methylation degrees in non-normal samples. Fragments originating from different HPV types could be distinguished and were independently validated by PCR-based assays with a specificity of 98% and a sensitivitity of 66%. In conclusion, although limited by the a priori knowledge of viral reference genome sequences, the proposed methodology can provide a first but substantial insight into the presence, concentration and types of methylated viral sequences in MBD-seq data without additional costs

    {BiQ} Analyzer {HiMod}: An Interactive Software Tool for High-throughput Locus-specific Analysis of 5-Methylcytosine and its Oxidized Derivatives

    Get PDF
    Recent data suggest important biological roles for oxidative modifications of methylated cytosines, specifically hydroxymethylation, formylation and carboxylation. Several assays are now available for profiling these DNA modifications genome-wide as well as in targeted, locus-specific settings. Here we present BiQ Analyzer HiMod, a user-friendly software tool for sequence alignment, quality control and initial analysis of locus-specific DNA modification data. The software supports four different assay types, and it leads the user from raw sequence reads to DNA modification statistics and publication-quality plots. BiQ Analyzer HiMod combines well-established graphical user interface of its predecessor tool, BiQ Analyzer HT, with new and extended analysis modes. BiQ Analyzer HiMod also includes updates of the analysis workspace, an intuitive interface, a custom vector graphics engine and support of additional input and output data formats. The tool is freely available as a stand-alone installation package from http://biq-analyzer-himod.bioinf.mpi-inf.mpg.de/

    RACS: Rapid Analysis of ChIP-Seq data for contig based genomes

    Full text link
    Background: Chromatin immunoprecipitation coupled to next generation sequencing (ChIP-Seq) is a widely used technique to investigate the function of chromatin-related proteins in a genome-wide manner. ChIP-Seq generates large quantities of data which can be difficult to process and analyse, particularly for organisms with contig based genomes. Contig-based genomes often have poor annotations for cis-elements, for example enhancers, that are important for gene expression. Poorly annotated genomes make a comprehensive analysis of ChIP-Seq data difficult and as such standardized analysis pipelines are lacking. Methods: We report a computational pipeline that utilizes traditional High-Performance Computing techniques and open source tools for processing and analysing data obtained from ChIP-Seq. We applied our computational pipeline "Rapid Analysis of ChIP-Seq data" (RACS) to ChIP-Seq data that was generated in the model organism Tetrahymena thermophila, an example of an organism with a genome that is available in contigs. Results: To test the performance and efficiency of RACs, we performed control ChIP-Seq experiments allowing us to rapidly eliminate false positives when analyzing our previously published data set. Our pipeline segregates the found read accumulations between genic and intergenic regions and is highly efficient for rapid downstream analyses. Conclusions: Altogether, the computational pipeline presented in this report is an efficient and highly reliable tool to analyze genome-wide ChIP-Seq data generated in model organisms with contig-based genomes. RACS is an open source computational pipeline available to download from: https://bitbucket.org/mjponce/racs --or-- https://gitrepos.scinet.utoronto.ca/public/?a=summary&p=RACSComment: Submitted to BMC Bioinformatics. Computational pipeline available at https://bitbucket.org/mjponce/rac

    Nanopype: A modular and scalable nanopore data processing pipeline

    No full text
    Long-read third-generation nanopore sequencing enables researchers to now address a range of questions that are difficult to tackle with short read approaches. The rapidly expanding user base and continuously increasing throughput have sparked the development of a growing number of specialized analysis tools. However, streamlined processing of nanopore datasets using reproducible and transparent workflows is still lacking. Here we present Nanopype, a nanopore data processing pipeline that integrates a diverse set of established bioinformatics software while maintaining consistent and standardized output formats. Seamless integration into compute cluster environments makes the framework suitable for high-throughput applications. As a result, Nanopype facilitates comparability of nanopore data analysis workflows and thereby should enhance the reproducibility of biological insights

    Advancing the analysis of bisulfite sequencing data in its application to ecological plant epigenetics

    Get PDF
    The aim of this thesis is to bridge the gap between the state-of-the-art bioinformatic tools and resources, currently at the forefront of epigenetic analysis, and their emerging applications to non-model species in the context of plant ecology. New, high-resolution research tools are presented; first in a specific sense, by providing new genomic resources for a selected non-model plant species, and also in a broader sense, by developing new software pipelines to streamline the analysis of bisulfite sequencing data, in a manner which is applicable to a wide range of non-model plant species. The selected species is the annual field pennycress, Thlaspi arvense, which belongs in the same lineage of the Brassicaceae as the closely-related model species, Arabidopsis thaliana, and yet does not benefit from such extensive genomic resources. It is one of three key species in a Europe-wide initiative to understand how epigenetic mechanisms contribute to natural variation, stress responses and long-term adaptation of plants. To this end, this thesis provides a high-quality, chromosome-level assembly for T. arvense, alongside a rich complement of feature annotations of particular relevance to the study of epigenetics. The genome assembly encompasses a hybrid approach, involving both PacBio continuous long reads and circular consensus sequences, alongside Hi-C sequencing, PCR-free Illumina sequencing and genetic maps. The result is a significant improvement in contiguity over the existing draft state from earlier studies. Much of the basis for building an understanding of epigenetic mechanisms in non-model species centres around the study of DNA methylation, and in particular the analysis of bisulfite sequencing data to bring methylation patterns into nucleotide-level resolution. In order to maintain a broad level of comparison between T. arvense and the other selected species under the same initiative, a suite of software pipelines which include mapping, the quantification of methylation values, differential methylation between groups, and epigenome-wide association studies, have also been developed. Furthermore, presented herein is a novel algorithm which can facilitate accurate variant calling from bisulfite sequencing data using conventional approaches, such as FreeBayes or Genome Analysis ToolKit (GATK), which until now was feasible only with specifically-adapted software. This enables researchers to obtain high-quality genetic variants, often essential for contextualising the results of epigenetic experiments, without the need for additional sequencing libraries alongside. Each of these aspects are thoroughly benchmarked, integrated to a robust workflow management system, and adhere to the principles of FAIR (Findability, Accessibility, Interoperability and Reusability). Finally, further consideration is given to the unique difficulties presented by population-scale data, and a number of concepts and ideas are explored in order to improve the feasibility of such analyses. In summary, this thesis introduces new high-resolution tools to facilitate the analysis of epigenetic mechanisms, specifically relating to DNA methylation, in non-model plant data. In addition, thorough benchmarking standards are applied, showcasing the range of technical considerations which are of principal importance when developing new pipelines and tools for the analysis of bisulfite sequencing data. The complete “Epidiverse Toolkit” is available at https://github.com/EpiDiverse and will continue to be updated and improved in the future.:ABSTRACT ACKNOWLEDGEMENTS 1 INTRODUCTION 1.1 ABOUT THIS WORK 1.2 BIOLOGICAL BACKGROUND 1.2.1 Epigenetics in plant ecology 1.2.2 DNA methylation 1.2.3 Maintenance of 5mC patterns in plants 1.2.4 Distribution of 5mC patterns in plants 1.3 TECHNICAL BACKGROUND 1.3.1 DNA sequencing 1.3.2 The case for a high-quality genome assembly 1.3.3 Sequence alignment for NGS 1.3.4 Variant calling approaches 2 BUILDING A SUITABLE REFERENCE GENOME 2.1 INTRODUCTION 2.2 MATERIALS AND METHODS 2.2.1 Seeds for the reference genome development 2.2.2 Sample collection, library preparation, and DNA sequencing 2.2.3 Contig assembly and initial scaffolding 2.2.4 Re-scaffolding 2.2.5 Comparative genomics 2.3 RESULTS 2.3.1 An improved reference genome sequence 2.3.2 Comparative genomics 2.4 DISCUSSION 3 FEATURE ANNOTATION FOR EPIGENOMICS 3.1 INTRODUCTION 3.2 MATERIALS AND METHODS 3.2.1 Tissue preparation for RNA sequencing 3.2.2 RNA extraction and sequencing 3.2.3 Transcriptome assembly 3.2.4 Genome annotation 3.2.5 Transposable element annotations 3.2.6 Small RNA annotations 3.2.7 Expression atlas 3.2.8 DNA methylation 3.3 RESULTS 3.3.1 Transcriptome assembly 3.3.2 Protein-coding genes 3.3.3 Non-coding loci 3.3.4 Transposable elements 3.3.5 Small RNA 3.3.6 Pseudogenes 3.3.7 Gene expression atlas 3.3.8 DNA Methylation 3.4 DISCUSSION 4 BISULFITE SEQUENCING METHODS 4.1 INTRODUCTION 4.2 PRINCIPLES OF BISULFITE SEQUENCING 4.3 EXPERIMENTAL DESIGN 4.4 LIBRARY PREPARATION 4.4.1 Whole Genome Bisulfite Sequencing (WGBS) 4.4.2 Reduced Representation Bisulfite Sequencing (RRBS) 4.4.3 Target capture bisulfite sequencing 4.5 BIOINFORMATIC ANALYSIS OF BISULFITE DATA 4.5.1 Quality Control 4.5.2 Read Alignment 4.5.3 Methylation Calling 4.6 ALTERNATIVE METHODS 5 FROM READ ALIGNMENT TO DNA METHYLATION ANALYSIS 5.1 INTRODUCTION 5.2 MATERIALS AND METHODS 5.2.1 Reference species 5.2.2 Natural accessions 5.2.3 Read simulation 5.2.4 Read alignment 5.2.5 Mapping rates 5.2.6 Precision-recall 5.2.7 Coverage deviation 5.2.8 DNA methylation analysis 5.3 RESULTS 5.4 DISCUSSION 5.5 A PIPELINE FOR WGBS ANALYSIS 6 THERE AND BACK AGAIN: INFERRING GENOMIC INFORMATION 6.1 INTRODUCTION 6.1.1 Implementing a new approach 6.2 MATERIALS AND METHODS 6.2.1 Validation datasets 6.2.2 Read processing and alignment 6.2.3 Variant calling 6.2.4 Benchmarking 6.3 RESULTS 6.4 DISCUSSION 6.5 A PIPELINE FOR SNP VARIANT ANALYSIS 7 POPULATION-LEVEL EPIGENOMICS 7.1 INTRODUCTION 7.2 CHALLENGES IN POPULATION-LEVEL EPIGENOMICS 7.3 DIFFERENTIAL METHYLATION 7.3.1 A pipeline for case/control DMRs 7.3.2 A pipeline for population-level DMRs 7.4 EPIGENOME-WIDE ASSOCIATION STUDIES (EWAS) 7.4.1 A pipeline for EWAS analysis 7.5 GENOTYPING-BY-SEQUENCING (EPIGBS) 7.5.1 Extending the epiGBS pipeline 7.6 POPULATION-LEVEL HAPLOTYPES 7.6.1 Extending the EpiDiverse/SNP pipeline 8 CONCLUSION APPENDICES A. SUPPLEMENT: BUILDING A SUITABLE REFERENCE GENOME B. SUPPLEMENT: FEATURE ANNOTATION FOR EPIGENOMICS C. SUPPLEMENT: FROM READ ALIGNMENT TO DNA METHYLATION ANALYSIS D. SUPPLEMENT: INFERRING GENOMIC INFORMATION BIBLIOGRAPH
    • …
    corecore