200,712 research outputs found

    Identifying common problems in the acquisition and deployment of large-scale software projects in the US and UK healthcare systems

    Get PDF
    Public and private organizations are investing increasing amounts into the development of healthcare information technology. These applications are perceived to offer numerous benefits. Software systems can improve the exchange of information between healthcare facilities. They support standardised procedures that can help to increase consistency between different service providers. Electronic patient records ensure minimum standards across the trajectory of care when patients move between different specializations. Healthcare information systems also offer economic benefits through efficiency savings; for example by providing the data that helps to identify potential bottlenecks in the provision and administration of care. However, a number of high-profile failures reveal the problems that arise when staff must cope with the loss of these applications. In particular, teams have to retrieve paper based records that often lack the detail on electronic systems. Individuals who have only used electronic information systems face particular problems in learning how to apply paper-based fallbacks. The following pages compare two different failures of Healthcare Information Systems in the UK and North America. The intention is to ensure that future initiatives to extend the integration of electronic patient records will build on the ‘lessons learned’ from previous systems

    The Serums Tool-Chain:Ensuring Security and Privacy of Medical Data in Smart Patient-Centric Healthcare Systems

    Get PDF
    Digital technology is permeating all aspects of human society and life. This leads to humans becoming highly dependent on digital devices, including upon digital: assistance, intelligence, and decisions. A major concern of this digital dependence is the lack of human oversight or intervention in many of the ways humans use this technology. This dependence and reliance on digital technology raises concerns in how humans trust such systems, and how to ensure digital technology behaves appropriately. This works considers recent developments and projects that combine digital technology and artificial intelligence with human society. The focus is on critical scenarios where failure of digital technology can lead to significant harm or even death. We explore how to build trust for users of digital technology in such scenarios and considering many different challenges for digital technology. The approaches applied and proposed here address user trust along many dimensions and aim to build collaborative and empowering use of digital technologies in critical aspects of human society

    Research and Education in Computational Science and Engineering

    Get PDF
    Over the past two decades the field of computational science and engineering (CSE) has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers of all persuasions with algorithmic inventions and software systems that transcend disciplines and scales. Carried on a wave of digital technology, CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments---including the architectural complexity of extreme-scale computing, the data revolution that engulfs the planet, and the specialization required to follow the applications to new frontiers---is redefining the scope and reach of the CSE endeavor. This report describes the rapid expansion of CSE and the challenges to sustaining its bold advances. The report also presents strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie

    Representing and coding the knowledge embedded in texts of Health Science Web published articles

    Get PDF
    Despite the fact that electronic publishing is a common activity to scholars electronic journals are still based in the print model and do not take full advantage of the facilities offered by the Semantic Web environment. This is a report of the results of a research project with the aim of investigating the possibilities of electronic publishing journal articles both as text for human reading and in machine readable format recording the new knowledge contained in the article. This knowledge is identified with the scientific methodology elements such as problem, methodology, hypothesis, results, and conclusions. A model integrating all those elements is proposed which makes explicit and records the knowledge embedded in the text of scientific articles as an ontology. Knowledge thus represented enables its processing by intelligent software agents The proposed model aims to take advantage of these facilities enabling semantic retrieval and validation of the knowledge contained in articles. To validate and enhance the model a set of electronic journal articles were analyzed
    corecore