1,328 research outputs found

    A hybrid solution approach for the 3L-VRP with simultaneous delivery and pickups

    Get PDF
    This paper deals with a special vehicle routing problem with backhauls where each customer receives items from a depot and, at the same time, returns items back to the depot. Moreover, time windows are assumed and three-dimensional loading constraints are to be observed, i.e. the items are three-dimensional boxes and packing constraints, e.g. regarding load stability, are to be met. The resulting problem is the vehicle routing problem with simultaneous delivery and pickup (VRPSDP), time windows, and three-dimensional loading constraints (3L-VRPSDPTW). This problem occurs, for example, if retail stores are supplied by a central warehouse and wish to return packaging material.A particular challenge of the problem is to transport delivery and pickup items simultaneously on the same vehicle. In order to avoid any reloading effort during a tour, we consider two different loading approaches of vehicles: (i) loading from the back side with separation of the loading space into a delivery section and a pickup section and (ii) loading at the long side. A hybrid algorithm is proposed for the 3L-VRPSDPTW consisting of an adaptive large neighbourhood search for the routing and different packing heuristics for the loading part of the problem. Extensive numerical experiments are conducted with VRPSDP instances from the literature and newly generated instances for the 3LVRPSDPTW

    Recent Advances in Multi-dimensional Packing Problems

    Get PDF

    Hybrid Algorithms for the Vehicle Routing Problem with Pickup and Delivery and Two-dimensional Loading Constraints

    Get PDF
    We extend the classical Pickup and Delivery Problem (PDP) to an integrated routing and two-dimensional loading problem, called PDP with two-dimensional loading constraints (2L-PDP). A set of routes of minimum total length has to be determined such that each request is transported from a loading site to the corresponding unloading site. Each request consists of a given set of 2D rectangular items with a certain weight. The vehicles have a weight capacity and a rectangular two-dimensional loading area. All loading and unloading operations must be done exclusively by movements parallel to the longitudinal axis of the loading area of a vehicle and without moving items of other requests. Furthermore, each item must not be moved after loading and before unloading. The problem is of interest for the transport of rectangular-shaped items that cannot be stacked one on top of the other because of their weight, fragility or large dimensions. The 2L-PDP also generalizes the well-known Capacitated Vehicle Routing Problem with Two-dimensional Loading Constraints (2L-CVRP), in which the demand of each customer is to be transported from the depot to the customer’s unloading site.This paper proposes two hybrid algorithms for solving the 2L-PDP and each one consists of a routing and a packing procedure. Within both approaches, the routing procedure modifies a well-known large neighborhood search for the one-dimensional PDP and the packing procedure uses six different constructive heuristics for packing the items. Computational experiments were carried out using 60 newly proposed 2L-PDP benchmark instances with up to 150 requests

    A hybrid algorithm for the vehicle routing problem with three-dimensional loading constraints and mixed backhauls

    Get PDF
    In this paper, a variant of the vehicle routing problem with mixed backhauls (VRPMB) is presented, i.e. goods have to be delivered from a central depot to linehaul customers, and, at the same time, goods have to be picked up from backhaul customers and brought to the depot. Both types of customers can be visited in mixed sequences. The goods to be delivered or picked up are three-dimensional (cuboid) items. Hence, in addition to a routing plan, a feasible packing plan for each tour has to be provided considering a number of loading constraints. The resulting problem is the vehicle routing problem with three-dimensional loading constraints and mixed backhauls (3L-VRPMB)

    A tabu search heuristic for the vehicle routing problem with two-dimensional loading constraints

    Get PDF
    This article addresses the well-known Capacitated Vehicle Routing Problem (CVRP), in the special case where the demand of a customer consists of a certain number of two-dimensional weighted items. The problem calls for the minimization of the cost of transportation needed for the delivery of the goods demanded by the customers, and carried out by a fleet of vehicles based at a central depot. In order to accommodate all items on the vehicles, a feasibility check of the two-dimensional packing (2L) must be executed on each vehicle. The overall problem, denoted as 2L-CVRP, is NP-hard and particularly difficult to solve in practice. We propose a Tabu Search algorithm, in which the loading component of the problem is solved through heuristics, lower bounds, and a truncated branch-and-bound procedure. The effectiveness of the algorithm is demonstrated through extensivecomputational experiments

    A Hybrid Algorithm for the Vehicle Routing Problem with Pickup and Delivery and 3D Loading Constraints

    Get PDF
    In this paper, we extend the classical Pickup and Delivery Problem (PDP) to an integrated routing and three-dimensional loading problem, called PDP with 3D loading constraints (3L-PDP). A set of routes of minimum total length has to be determined such that each request is transported from a loading site to the corresponding unloading site. In the 3L-PDP, each request is given as a set of 3D rectangular items (boxes) and the vehicle capacity is replaced by a 3D loading space. We investigate which constraints will ensure that no reloading effort will occur, i.e. that no box is moved after loading and before unloading. A spectrum of 3L-PDP variants is introduced with different characteristics in terms of reloading effort. We propose a hybrid algorithm for solving the 3L-PDP consisting of a routing and a packing procedure. The routing procedure modifies a well-known large neighborhood search for the 1D-PDP. A tree search heuristic is responsible for packing boxes. Computational experiments were carried out using 54 newly proposed 3L-PDP benchmark instances

    An exact approach for the vehicle routing problem with two-dimensional loading constraints

    Get PDF
    We consider a special case of the symmetric capacitated vehicle routing problem, in which a fleet of K identical vehicles must serve n customers, each with a given demand consisting in a set of rectangular two-dimensional weighted items. The vehicles have a two-dimensional loading surface and a maximum weight capacity. The aim is to find a partition of the customers into routes of minimum total cost such that, for each vehicle, the weight capacity is taken into account and a feasible two-Dimensional allocation of the items into the loading surface exists. The problem has several practical applications in freight transportation, and it is -hard in the strong sense. We propose an exact approach, based on a branch-and-cut algorithm, for the minimization of the routing cost that iteratively calls a branch-and-bound algorithm for checking the feasibility of the loadings. Heuristics are also used to improve the overall performance of the algorithm. The effectiveness of the approach is shown by means of computational results
    • 

    corecore