45 research outputs found

    Enhanced artificial bee colony-least squares support vector machines algorithm for time series prediction

    Get PDF
    Over the past decades, the Least Squares Support Vector Machines (LSSVM) has been widely utilized in prediction task of various application domains. Nevertheless, existing literature showed that the capability of LSSVM is highly dependent on the value of its hyper-parameters, namely regularization parameter and kernel parameter, where this would greatly affect the generalization of LSSVM in prediction task. This study proposed a hybrid algorithm, based on Artificial Bee Colony (ABC) and LSSVM, that consists of three algorithms; ABC-LSSVM, lvABC-LSSVM and cmABC-LSSVM. The lvABC algorithm is introduced to overcome the local optima problem by enriching the searching behaviour using Levy mutation. On the other hand, the cmABC algorithm that incorporates conventional mutation addresses the over- fitting or under-fitting problem. The combination of lvABC and cmABC algorithm, which is later introduced as Enhanced Artificial Bee Colony–Least Squares Support Vector Machine (eABC-LSSVM), is realized in prediction of non renewable natural resources commodity price. Upon the completion of data collection and data pre processing, the eABC-LSSVM algorithm is designed and developed. The predictability of eABC-LSSVM is measured based on five statistical metrics which include Mean Absolute Percentage Error (MAPE), prediction accuracy, symmetric MAPE (sMAPE), Root Mean Square Percentage Error (RMSPE) and Theils’ U. Results showed that the eABC-LSSVM possess lower prediction error rate as compared to eight hybridization models of LSSVM and Evolutionary Computation (EC) algorithms. In addition, the proposed algorithm is compared to single prediction techniques, namely, Support Vector Machines (SVM) and Back Propagation Neural Network (BPNN). In general, the eABC-LSSVM produced more than 90% prediction accuracy. This indicates that the proposed eABC-LSSVM is capable of solving optimization problem, specifically in the prediction task. The eABC-LSSVM is hoped to be useful to investors and commodities traders in planning their investment and projecting their profit

    Advanced models of supervised structural clustering

    Get PDF
    The strength and power of structured prediction approaches in machine learning originates from a proper recognition and exploitation of inherent structural dependencies within complex objects, which structural models are trained to output. Among the complex tasks that benefited from structured prediction approaches, clustering is of a special interest. Structured output models based on representing clusters by latent graph structures made the task of supervised clustering tractable. While in practice these models proved effective in solving the complex NLP task of coreference resolution, in this thesis, we aim at exploring their capacity to be extended to other tasks and domains, as well as the methods for performing such adaptation and for improvement in general, which, as a result, go beyond clustering and are commonly applicable in structured prediction. Studying the extensibility of the structural approaches for supervised clustering, we apply them to two different domains in two different ways. First, in the networking domain, we do clustering of network traffic by adapting the model, taking into account the continuity of incoming data. Our experiments demonstrate that the structural clustering approach is not only effective in such a scenario, but also, if changing the perspective, provides a novel potentially useful tool for detecting anomalies. The other part of our work is dedicated to assessing the amenability of the structural clustering model to joint learning with another structural model, for ranking. Our preliminary analysis in the context of the task of answer-passage reranking in question answering reveals a potential benefit of incorporating auxiliary clustering structures. Due to the intrinsic complexity of the clustering task and, respectively, its evaluation scenarios, it gave us grounds for studying the possibility and the effect from optimizing task-specific complex measures in structured prediction algorithms. It is common for structured prediction approaches to optimize surrogate loss functions, rather than the actual task-specific ones, in or- der to facilitate inference and preserve efficiency. In this thesis, we, first, study when surrogate losses are sufficient and, second, make a step towards enabling direct optimization of complex structural loss functions. We propose to learn an approximation of a complex loss by a regressor from data. We formulate a general structural framework for learning with a learned loss, which, applied to a particular case of a clustering problem – coreference resolution, i) enables the optimization of a coreference metric, by itself, having high computational complexity, and ii) delivers an improvement over the standard structural models optimizing simple surrogate objectives. We foresee this idea being helpful in many structured prediction applications, also as a means of adaptation to specific evaluation scenarios, and especially when a good loss approximation is found by a regressor from an induced feature space allowing good factorization over the underlying structure

    Building an Intrusion Detection System Using a Filter-Based Feature Selection Algorithm

    Get PDF
    Redundant and irrelevant features in data have caused a long-term problem in network traffic classification. These features not only slow down the process of classification but also prevent a classifier from making accurate decisions, especially when coping with big data. In this paper, we propose a mutual information based algorithm that analytically selects the optimal feature for classification. This mutual information based feature selection algorithm can handle linearly and nonlinearly dependent data features. Its effectiveness is evaluated in the cases of network intrusion detection. An Intrusion Detection System (IDS), named Least Square Support Vector Machine based IDS (LSSVM-IDS), is built using the features selected by our proposed feature selection algorithm. The performance of LSSVM-IDS is evaluated using three intrusion detection evaluation datasets, namely KDD Cup 99, NSL-KDD and Kyoto 2006+ dataset. The evaluation results show that our feature selection algorithm contributes more critical features for LSSVM-IDS to achieve better accuracy and lower computational cost compared with the state-of-the-art methods

    Applied Metaheuristic Computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC

    ADVANCED CONTROL STRATEGIES FOR PHARMACEUTICAL ANTISOLVENT CRYSTALLIZATION PROCESSES

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Developing tools for determination of parameters involved in CO₂ based EOR methods

    Get PDF
    To mitigate the effects of climate change, CO₂ reduction strategies are suggested to lower anthropogenic emissions of greenhouse gasses owing to the use of fossil fuels. Consequently, the application of CO₂ based enhanced oil recovery methods (EORs) through petroleum reservoirs turn into the hot topic among the oil and gas researchers. This thesis includes two sections. In the first section, we developed deterministic tools for determination of three parameters which are important in CO₂ injection performance including minimum miscible pressure (MMP), equilibrium ratio (Kᵢ), and a swelling factor of oil in the presence of CO₂. For this purposes, we employed two inverse based methods including gene expression programming (GEP), and least square support vector machine (LSSVM). In the second part, we developed an easy-to-use, cheap, and robust data-driven based proxy model to determine the performance of CO₂ based EOR methods. In this section, we have to determine the input parameters and perform sensitivity analysis on them. Next step is designing the simulation runs and determining the performance of CO₂ injection in terms of technical viewpoint (recovery factor, RF). Finally, using the outputs gained from reservoir simulators and applying LSSVM method, we are going to develop the data-driven based proxy model. The proxy model can be considered as an alternative model to determine the efficiency of CO₂ based EOR methods in oil reservoir when the required experimental data are not available or accessible
    corecore