7,149 research outputs found

    A Novel Workload Allocation Strategy for Batch Jobs

    Get PDF
    The distribution of computational tasks across a diverse set of geographically distributed heterogeneous resources is a critical issue in the realisation of true computational grids. Conventionally, workload allocation algorithms are divided into static and dynamic approaches. Whilst dynamic approaches frequently outperform static schemes, they usually require the collection and processing of detailed system information at frequent intervals - a task that can be both time consuming and unreliable in the real-world. This paper introduces a novel workload allocation algorithm for optimally distributing the workload produced by the arrival of batches of jobs. Results show that, for the arrival of batches of jobs, this workload allocation algorithm outperforms other commonly used algorithms in the static case. A hybrid scheduling approach (using this workload allocation algorithm), where information about the speed of computational resources is inferred from previously completed jobs, is then introduced and the efficiency of this approach demonstrated using a real world computational grid. These results are compared to the same workload allocation algorithm used in the static case and it can be seen that this hybrid approach comprehensively outperforms the static approach

    Metaheuristic approaches to virtual machine placement in cloud computing: a review

    Get PDF

    Model Based Development of Quality-Aware Software Services

    Get PDF
    Modelling languages and development frameworks give support for functional and structural description of software architectures. But quality-aware applications require languages which allow expressing QoS as a first-class concept during architecture design and service composition, and to extend existing tools and infrastructures adding support for modelling, evaluating, managing and monitoring QoS aspects. In addition to its functional behaviour and internal structure, the developer of each service must consider the fulfilment of its quality requirements. If the service is flexible, the output quality depends both on input quality and available resources (e.g., amounts of CPU execution time and memory). From the software engineering point of view, modelling of quality-aware requirements and architectures require modelling support for the description of quality concepts, support for the analysis of quality properties (e.g. model checking and consistencies of quality constraints, assembly of quality), tool support for the transition from quality requirements to quality-aware architectures, and from quality-aware architecture to service run-time infrastructures. Quality management in run-time service infrastructures must give support for handling quality concepts dynamically. QoS-aware modeling frameworks and QoS-aware runtime management infrastructures require a common evolution to get their integration

    Cloud engineering is search based software engineering too

    Get PDF
    Many of the problems posed by the migration of computation to cloud platforms can be formulated and solved using techniques associated with Search Based Software Engineering (SBSE). Much of cloud software engineering involves problems of optimisation: performance, allocation, assignment and the dynamic balancing of resources to achieve pragmatic trade-offs between many competing technical and business objectives. SBSE is concerned with the application of computational search and optimisation to solve precisely these kinds of software engineering challenges. Interest in both cloud computing and SBSE has grown rapidly in the past five years, yet there has been little work on SBSE as a means of addressing cloud computing challenges. Like many computationally demanding activities, SBSE has the potential to benefit from the cloud; ‘SBSE in the cloud’. However, this paper focuses, instead, of the ways in which SBSE can benefit cloud computing. It thus develops the theme of ‘SBSE for the cloud’, formulating cloud computing challenges in ways that can be addressed using SBSE
    • 

    corecore