741 research outputs found

    Observers Design for a Class of Lipschitz Discrete-Time Systems with Time-Delay

    Get PDF
    The observer design problem for nonlinear time-delay systems becomes more and more a subject of research in constant evolution Germani et al. (2002), Germani & Pepe (2004), Aggoune et al. (1999), Raff & Allgöwer (2006), Trinh et al. (2004), Xu et al. (2004), Zemouche et al. (2006), Zemouche et al. (2007). Indeed, time-delay is frequently encountered in various practical systems, such as chemical engineering systems, neural networks and population dynamic model. One of the recent application of time-delay is the synchronization and information recovery in chaotic communication systems Cherrier et al. (2005). In fact, the time-delay is added in a suitable way to the chaotic system in the goal to increase the complexity of the chaotic behavior and then to enhance the security of communication systems. On the other hand, contrary to nonlinear continuous-time systems, little attention has been paid toward discrete-time nonlinear systems with time-delay. We refer the readers to the few existing references Lu & Ho (2004a) and Lu & Ho (2004b), where the authors investigated the problem of robust H∞ observer design for a class of Lipschitz time-delay systems with uncertain parameters in the discrete-time case. Their method show the stability of the state of the system and the estimation error simultaneously. This chapter deals with observer design for a class of Lipschitz nonlinear discrete-time systems with time-delay. The main result lies in the use of a new structure of the proposed observer inspired from Fan & Arcak (2003). Using a Lyapunov-Krasovskii functional, a new nonrestrictive synthesis condition is obtained. This condition, expressed in term of LMI, contains more degree of freedom than those proposed by the approaches available in literature. Indeed, these last use a simple Luenberger observer which can be derived from the general form of the observer proposed in this paper by neglecting some observer gains. An extension of the presented result to H∞ performance analysis is given in the goal to take into account the noise which affects the considered system. A more general LMI is established. The last section is devoted to systems with differentiable nonlinearities. In this case, based on the use of the Differential Mean Value Theorem (DMVT), less restrictive synthesis conditions are proposed

    H ∞  sliding mode observer design for a class of nonlinear discrete time-delay systems: A delay-fractioning approach

    Get PDF
    Copyright @ 2012 John Wiley & SonsIn this paper, the H ∞  sliding mode observer (SMO) design problem is investigated for a class of nonlinear discrete time-delay systems. The nonlinear descriptions quantify the maximum possible derivations from a linear model, and the system states are allowed to be immeasurable. Attention is focused on the design of a discrete-time SMO such that the asymptotic stability as well as the H ∞  performance requirement of the error dynamics can be guaranteed in the presence of nonlinearities, time delay and external disturbances. Firstly, a discrete-time discontinuous switched term is proposed to make sure that the reaching condition holds. Then, by constructing a new Lyapunov–Krasovskii functional based on the idea of ‘delay fractioning’ and by introducing some appropriate free-weighting matrices, a sufficient condition is established to guarantee the desired performance of the error dynamics in the specified sliding mode surface by solving a minimization problem. Finally, an illustrative example is given to show the effectiveness of the designed SMO design scheme

    Error-constrained filtering for a class of nonlinear time-varying delay systems with non-gaussian noises

    Get PDF
    Copyright [2010] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this technical note, the quadratic error-constrained filtering problem is formulated and investigated for discrete time-varying nonlinear systems with state delays and non-Gaussian noises. Both the Lipschitz-like and ellipsoid-bounded nonlinearities are considered. The non-Gaussian noises are assumed to be unknown, bounded, and confined to specified ellipsoidal sets. The aim of the addressed filtering problem is to develop a recursive algorithm based on the semi-definite programme method such that, for the admissible time-delays, nonlinear parameters and external bounded noise disturbances, the quadratic estimation error is not more than a certain optimized upper bound at every time step. The filter parameters are characterized in terms of the solution to a convex optimization problem that can be easily solved by using the semi-definite programme method. A simulation example is exploited to illustrate the effectiveness of the proposed design procedures.This work was supported in part by the Leverhulme Trust of the U.K., the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Royal Society of the U.K., the National Natural Science Foundation of China under Grant 61028008 and Grant 61074016, the Shanghai Natural Science Foundation of China under Grant 10ZR1421200, and the Alexander von Humboldt Foundation of Germany. Recommended by Associate Editor E. Fabre

    Robust Preview Control for a Class of Uncertain Discrete-Time Lipschitz Nonlinear Systems

    Get PDF
    © 2018 Xiao Yu et al. This paper considers the design of the robust preview controller for a class of uncertain discrete-time Lipschitz nonlinear systems. According to the preview control theory, an augmented error system including the tracking error and the known future information on the reference signal is constructed. To avoid static error, a discrete integrator is introduced. Using the linear matrix inequality (LMI) approach, a state feedback controller is developed to guarantee that the closed-loop system of the augmented error system is asymptotically stable with H∞ performance. Based on this, the robust preview tracking controller of the original system is obtained. Finally, two numerical examples are included to show the effectiveness of the proposed controller

    Variance-constrained multiobjective control and filtering for nonlinear stochastic systems: A survey

    Get PDF
    The multiobjective control and filtering problems for nonlinear stochastic systems with variance constraints are surveyed. First, the concepts of nonlinear stochastic systems are recalled along with the introduction of some recent advances. Then, the covariance control theory, which serves as a practical method for multi-objective control design as well as a foundation for linear system theory, is reviewed comprehensively. The multiple design requirements frequently applied in engineering practice for the use of evaluating system performances are introduced, including robustness, reliability, and dissipativity. Several design techniques suitable for the multi-objective variance-constrained control and filtering problems for nonlinear stochastic systems are discussed. In particular, as a special case for the multi-objective design problems, the mixed H 2 / H ∞ control and filtering problems are reviewed in great detail. Subsequently, some latest results on the variance-constrained multi-objective control and filtering problems for the nonlinear stochastic systems are summarized. Finally, conclusions are drawn, and several possible future research directions are pointed out

    H ? filtering for stochastic singular fuzzy systems with time-varying delay

    Get PDF
    This paper considers the H? filtering problem for stochastic singular fuzzy systems with timevarying delay. We assume that the state and measurement are corrupted by stochastic uncertain exogenous disturbance and that the system dynamic is modeled by Ito-type stochastic differential equations. Based on an auxiliary vector and an integral inequality, a set of delay-dependent sufficient conditions is established, which ensures that the filtering error system is e?t - weighted integral input-to-state stable in mean (iISSiM). A fuzzy filter is designed such that the filtering error system is impulse-free, e?t -weighted iISSiM and the H? attenuation level from disturbance to estimation error is belowa prescribed scalar.Aset of sufficient conditions for the solvability of the H? filtering problem is obtained in terms of a new type of Lyapunov function and a set of linear matrix inequalities. Simulation examples are provided to illustrate the effectiveness of the proposed filtering approach developed in this paper

    Observer synthesis under time-varying sampling for Lipschitz nonlinear systems

    Get PDF
    International audienceIn this work, the problem of observation of continuous-time nonlinear Lipschitz systems under time-varying discrete measurements is considered. This class of systems naturally occurs when continuous processes are observed through digital sensors and information is sent via a network to a computer for state estimation. Since the network introduces variations in the sampling time, the observer must be designed so that it takes them into account. Here impulsive observers, which make instantaneous correction when information is received, are investigated. Moreover, we consider time-varying observer gains adapting to the varying sampling interval. In order to deal with both continuous-time and discrete-time dynamics, a new hybrid model is used to state the problem and establish the convergence of the proposed observer. First, generic conditions are provided using a hybrid Lyapunov function. Then, a restriction of the generic Lyapunov function is used to establish tractable conditions that allows the analysis and synthesis of an impulsive gain

    A review on analysis and synthesis of nonlinear stochastic systems with randomly occurring incomplete information

    Get PDF
    Copyright q 2012 Hongli Dong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In the context of systems and control, incomplete information refers to a dynamical system in which knowledge about the system states is limited due to the difficulties in modeling complexity in a quantitative way. The well-known types of incomplete information include parameter uncertainties and norm-bounded nonlinearities. Recently, in response to the development of network technologies, the phenomenon of randomly occurring incomplete information has become more and more prevalent. Such a phenomenon typically appears in a networked environment. Examples include, but are not limited to, randomly occurring uncertainties, randomly occurring nonlinearities, randomly occurring saturation, randomly missing measurements and randomly occurring quantization. Randomly occurring incomplete information, if not properly handled, would seriously deteriorate the performance of a control system. In this paper, we aim to survey some recent advances on the analysis and synthesis problems for nonlinear stochastic systems with randomly occurring incomplete information. The developments of the filtering, control and fault detection problems are systematically reviewed. Latest results on analysis and synthesis of nonlinear stochastic systems are discussed in great detail. In addition, various distributed filtering technologies over sensor networks are highlighted. Finally, some concluding remarks are given and some possible future research directions are pointed out. © 2012 Hongli Dong et al.This work was supported in part by the National Natural Science Foundation of China under Grants 61273156, 61134009, 61273201, 61021002, and 61004067, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Royal Society of the UK, the National Science Foundation of the USA under Grant No. HRD-1137732, and the Alexander von Humboldt Foundation of German
    corecore