1,605 research outputs found

    Three-dimensional Photoacoustic Tomography System Design Analysis and Optimization

    Get PDF
    Photoacoustic tomography (PAT) is an emerging imaging modality capable of mapping optical absorption in tissues. It is a hybrid technique that combines the high spatial resolution of ultrasound imaging with the high contrast of optical imaging, and has demonstrated much potential in biomedical applications. Conventional PAT systems employ raster scanning to capture a large number of projections, thus improving image reconstruction at the cost of temporal resolution. Arising from the desire for real-time 3D PA imaging, several groups have begun to design PAT systems with staring arrays, where image acquisition is only limited by the repetition rate of the laser. However, there has been little emphasis on staring array design analysis and optimization. We have developed objective figures of merit for PAT system performance and applied these metrics to improve system design. The results suggested that the developed approach could be used to objectively characterize and improve any PAT system design

    A System for THz Imaging of Low-Contrast Targets Using the Born Approximation

    Get PDF
    A THz imaging system, operating at 346 GHz and tailored for implementation of an imaging algorithm based on the Born approximation, is presented. The imaging algorithm provides focusing by compensating for the antenna footprint. This allows for using a more simple antenna system without optical focusing. Several aspects of implementing an imaging algorithm based on the Born approximation in THz imaging are discussed and key system properties are highlighted. The performance of the imaging algorithm is verified by imaging two simple dielectric targets. The results indicate that this approach provides a qualitative indication of the distribution of contrast in the samples complex permittivity and is a potential complement to existing imaging techniques

    Fast fluorescence microscopy for imaging the dynamics of embryonic development

    Get PDF
    Live imaging has gained a pivotal role in developmental biology since it increasingly allows real-time observation of cell behavior in intact organisms. Microscopes that can capture the dynamics of ever-faster biological events, fluorescent markers optimal for in vivo imaging, and, finally, adapted reconstruction and analysis programs to complete data flow all contribute to this success. Focusing on temporal resolution, we discuss how fast imaging can be achieved with minimal prejudice to spatial resolution, photon count, or to reliably and automatically analyze images. In particular, we show how integrated approaches to imaging that combine bright fluorescent probes, fast microscopes, and custom post-processing techniques can address the kinetics of biological systems at multiple scales. Finally, we discuss remaining challenges and opportunities for further advances in this field

    Publications of the Jet Propulsion Laboratory, 1988

    Get PDF
    This bibliography describes and indexes by primary author the externally distributed technical reporting, released during calendar year 1988, that resulted from scientific and engineering work performed, or managed, by the Jet Propulsion Laboratory. Three classes of publications are included: JPL publications in which the information is complete for a specific accomplishment; articles from the quarterly Telecommunications and Data Acquisition (TDA) Progress Report; and articles published in the open literature

    The development of near field probing systems for EMC near field visualization and EMI source localization

    Get PDF
    The objectives of this research are to visualize the frequency dependent electromagnetic field distribution for electromagnetic compatibility (EMC) applications and the radiating source reconstruction on complex shaped electronic systems. This is achieved by combining near field probing with a system for automatically recording the probe position and orientation. Due to the complexity of the shape of the electronic systems of interest, and for utilizing the expertise of the user, the probe will be moved manually not robotically. Concurrently, the local near field will be recorded, associated with the location and displayed at near real time on the captured 3D geometry as a field strength map for EMC applications and, for source reconstruction, a reconstructed image showing the far field radiating sources. --Abstract, page iii

    THz and mm-Wave Sensing of Corneal Tissue Water Content: Electromagnetic Modeling and Analysis.

    Get PDF
    Terahertz (THz) spectral properties of human cornea are explored as a function of central corneal thickness (CCT) and corneal water content, and the clinical utility of THz-based corneal water content sensing is discussed. Three candidate corneal tissue water content (CTWC) perturbations, based on corneal physiology, are investigated that affect the axial water distribution and total thickness. The THz frequency reflectivity properties of the three CTWC perturbations were simulated and explored with varying system center frequency and bandwidths (Q-factors). The modeling showed that at effective optical path lengths on the order of a wavelength the cornea presents a lossy etalon bordered by air at the anterior and the aqueous humor at the posterior. The simulated standing wave peak-to-valley ratio is pronounced at lower frequencies and its effect on acquired data can be modulated by adjusting the bandwidth of the sensing system. These observations are supported with experimental spectroscopic data. The results suggest that a priori knowledge of corneal thickness can be utilized for accurate assessments of corneal tissue water content. The physiologic variation of corneal thickness with respect to the wavelengths spanned by the THz band is extremely limited compared to all other structures in the body making CTWC sensing unique amongst all proposed applications of THz medical imaging
    corecore