36 research outputs found

    Computer Vision Techniques for Transcatheter Intervention

    Get PDF
    Minimally invasive transcatheter technologies have demonstrated substantial promise for the diagnosis and treatment of cardiovascular diseases. For example, TAVI is an alternative to AVR for the treatment of severe aortic stenosis and TAFA is widely used for the treatment and cure of atrial fibrillation. In addition, catheter-based IVUS and OCT imaging of coronary arteries provides important information about the coronary lumen, wall and plaque characteristics. Qualitative and quantitative analysis of these cross-sectional image data will be beneficial for the evaluation and treatment of coronary artery diseases such as atherosclerosis. In all the phases (preoperative, intraoperative, and postoperative) during the transcatheter intervention procedure, computer vision techniques (e.g., image segmentation, motion tracking) have been largely applied in the field to accomplish tasks like annulus measurement, valve selection, catheter placement control, and vessel centerline extraction. This provides beneficial guidance for the clinicians in surgical planning, disease diagnosis, and treatment assessment. In this paper, we present a systematical review on these state-of-the-art methods.We aim to give a comprehensive overview for researchers in the area of computer vision on the subject of transcatheter intervention. Research in medical computing is multi-disciplinary due to its nature, and hence it is important to understand the application domain, clinical background, and imaging modality so that methods and quantitative measurements derived from analyzing the imaging data are appropriate and meaningful. We thus provide an overview on background information of transcatheter intervention procedures, as well as a review of the computer vision techniques and methodologies applied in this area

    Automatic segmentation of cross-sectional coronary arterial images

    Get PDF
    We present a novel approach to segment coronary cross-sectional images acquired using catheterization imaging techniques, i.e. intra-vascular ultrasound (IVUS) and optical coherence tomography (OCT). The proposed approach combines cross-sectional segmentation with longitudinal tracking in order to tackle various forms of imaging artifacts and to achieve consistent segmentation. A node-weighted directed graph is constructed on two consecutive cross-sectional frames with embedded shape constraints within individual cross-sections or frames and between consecutive frames. The intra-frame constraints are derived from a set of training samples and are embedded in both graph construction and its cost function. The inter-frame constraints are imposed by tracking the borders of interest across multiple frames. The coronary images are transformed from Cartesian coordinates to polar coordinates. Graph partition can then be formulated as searching an optimal interface in the node-weighted directed graph without user initialization. It also allows efficient parametrization of the border using radial basis function (RBF) and thus reduces the tracking of a large number of border points to a very few RBF centers. Moreover, we carry out supervised column-wise tissue classification in order to automatically optimize the feature selection. Instead of empirically assigning weights to different feature detectors, we dynamically and automatically adapt those weighting depending on the tissue compositions in each individual column of pixels

    Combinatorial optimisation for arterial image segmentation.

    Get PDF
    Cardiovascular disease is one of the leading causes of the mortality in the western world. Many imaging modalities have been used to diagnose cardiovascular diseases. However, each has different forms of noise and artifacts that make the medical image analysis field important and challenging. This thesis is concerned with developing fully automatic segmentation methods for cross-sectional coronary arterial imaging in particular, intra-vascular ultrasound and optical coherence tomography, by incorporating prior and tracking information without any user intervention, to effectively overcome various image artifacts and occlusions. Combinatorial optimisation methods are proposed to solve the segmentation problem in polynomial time. A node-weighted directed graph is constructed so that the vessel border delineation is considered as computing a minimum closed set. A set of complementary edge and texture features is extracted. Single and double interface segmentation methods are introduced. Novel optimisation of the boundary energy function is proposed based on a supervised classification method. Shape prior model is incorporated into the segmentation framework based on global and local information through the energy function design and graph construction. A combination of cross-sectional segmentation and longitudinal tracking is proposed using the Kalman filter and the hidden Markov model. The border is parameterised using the radial basis functions. The Kalman filter is used to adapt the inter-frame constraints between every two consecutive frames to obtain coherent temporal segmentation. An HMM-based border tracking method is also proposed in which the emission probability is derived from both the classification-based cost function and the shape prior model. The optimal sequence of the hidden states is computed using the Viterbi algorithm. Both qualitative and quantitative results on thousands of images show superior performance of the proposed methods compared to a number of state-of-the-art segmentation methods

    Optical coherence tomography for the assessment of coronary atherosclerosis and vessel response after stent implantation

    Get PDF
    Optical Coherence Tomography (OCT) is a light-based imaging modality that can provide in vivo high-resolution images of the coronary artery with a level of resolution (axial 10-20 µm) ten times higher than intravascular ultrasound. The technique, uses low-coherent near infrarred light to create high-resolution cross sectional images of the vessel. The technology refinement achieved in the last years has made this imaging modality less procedurally demanding opening its possibilities for clinical use. The present thesis provides im

    Carotid artery contrast enhanced ultrasound

    Get PDF

    Carotid artery contrast enhanced ultrasound

    Get PDF

    Biomechanical Modeling of Atherosclerotic Plaques for Risk Assessment

    Get PDF
    A healthy arterial wall comprises three layers: the adventitia, the media and the intima (Figure 1.1, left side). The adventitia is the outermost layer, mainly composed of collagen. The media underlies the adventitia and is the middle layer in the arterial wall. It is made up of concentrically arranged smooth muscle cells and collagen fibers. The intima is the innermost layer. It is a thin sheet of endothelial cells attached to a basal membrane. Atherosclerosis is a systemic, inflammatory disease of the arterial system characterized by local thickening of vessel walls. Thickened arterial segments are called atherosclerotic plaques (Figure 1.1, right side). During atherogenesis - progression of an atherosclerotic plaque- the major changes take place in the intima due to infiltration of lipids and inflammatory cells from the luminal side, smooth muscle cell migration and proliferation, extracellular matrix deposition, and intraplaque hemorrhage. From a thin cell layer, the intima transforms into a thick layer (Figure 1.1) with the possible structural components being smooth muscle cells, collagen and elastin fibers, and lipids. Besides changes in the intima, atherosclerosis causes differentiation in the media and adventitia layers. Fibrosis, atrophy and inflammation may take place in the media and adventitia during atherogenesis
    corecore