892 research outputs found

    Iterative Time-Varying Filter Algorithm Based on Discrete Linear Chirp Transform

    Full text link
    Denoising of broadband non--stationary signals is a challenging problem in communication systems. In this paper, we introduce a time-varying filter algorithm based on the discrete linear chirp transform (DLCT), which provides local signal decomposition in terms of linear chirps. The method relies on the ability of the DLCT for providing a sparse representation to a wide class of broadband signals. The performance of the proposed algorithm is compared with the discrete fractional Fourier transform (DFrFT) filtering algorithm. Simulation results show that the DLCT algorithm provides better performance than the DFrFT algorithm and consequently achieves high quality filtering.Comment: 6 pages, conference pape

    Rehaussement du signal de parole par EMD et opérateur de Teager-Kaiser

    Get PDF
    The authors would like to thank Professor Mohamed Bahoura from Universite de Quebec a Rimouski for fruitful discussions on time adaptive thresholdingIn this paper a speech denoising strategy based on time adaptive thresholding of intrinsic modes functions (IMFs) of the signal, extracted by empirical mode decomposition (EMD), is introduced. The denoised signal is reconstructed by the superposition of its adaptive thresholded IMFs. Adaptive thresholds are estimated using the Teager–Kaiser energy operator (TKEO) of signal IMFs. More precisely, TKEO identifies the type of frame by expanding differences between speech and non-speech frames in each IMF. Based on the EMD, the proposed speech denoising scheme is a fully data-driven approach. The method is tested on speech signals with different noise levels and the results are compared to EMD-shrinkage and wavelet transform (WT) coupled with TKEO. Speech enhancement performance is evaluated using output signal to noise ratio (SNR) and perceptual evaluation of speech quality (PESQ) measure. Based on the analyzed speech signals, the proposed enhancement scheme performs better than WT-TKEO and EMD-shrinkage approaches in terms of output SNR and PESQ. The noise is greatly reduced using time-adaptive thresholding than universal thresholding. The study is limited to signals corrupted by additive white Gaussian noise

    A tutorial review on time-frequency analysis of non-stationary vibration signals with nonlinear dynamics applications

    Get PDF
    Time-frequency analysis (TFA) for mechanical vibrations in non-stationary operations is the main subject of this article, concisely written to be an introducing tutorial comparing different time-frequency techniques for non-stationary signals. The theory was carefully exposed and complemented with sample applications on mechanical vibrations and nonlinear dynamics. A particular phenomenon that is also observed in non-stationary systems is the Sommerfeld effect, which occurs due to the interaction between a non-ideal energy source and a mechanical system. An application through TFA for the characterization of the Sommerfeld effect is presented. The techniques presented in this article are applied in synthetic and experimental signals of mechanical systems, but the techniques presented can also be used in the most diverse applications and also in the numerical solution of differential equation

    EEMD-MUSIC-Based Analysis for Natural Frequencies Identification of Structures Using Artificial and Natural Excitations

    Get PDF
    This paper presents a new EEMD-MUSIC- (ensemble empirical mode decomposition-multiple signal classification-) based methodology to identify modal frequencies in structures ranging from free and ambient vibration signals produced by artificial and natural excitations and also considering several factors as nonstationary effects, close modal frequencies, and noisy environments, which are common situations where several techniques reported in literature fail. The EEMD and MUSIC methods are used to decompose the vibration signal into a set of IMFs (intrinsic mode functions) and to identify the natural frequencies of a structure, respectively. The effectiveness of the proposed methodology has been validated and tested with synthetic signals and under real operating conditions. The experiments are focused on extracting the natural frequencies of a truss-type scaled structure and of a bridge used for both highway traffic and pedestrians. Results show the proposed methodology as a suitable solution for natural frequencies identification of structures from free and ambient vibration signals

    Time-frequency techniques for modal parameters identification of civil structures from acquired dynamic signals

    Get PDF
    A major trust of modal parameters identification (MPI) research in recent years has been based on using artificial and natural vibrations sources because vibration measurements can reflect the true dynamic behavior of a structure while analytical prediction methods, such as finite element models, are less accurate due to the numerous structural idealizations and uncertainties involved in the simulations. This paper presents a state-of-the-art review of the time-frequency techniques for modal parameters identification of civil structures from acquired dynamic signals as well as the factors that affect the estimation accuracy. Further, the latest signal processing techniques proposed since 2012 are also reviewed. These algorithms are worth being researched for MPI of large real-life structures because they provide good time-frequency resolution and noise-immunity

    Automated Classification for Electrophysiological Data: Machine Learning Approaches for Disease Detection and Emotion Recognition

    Get PDF
    Smart healthcare is a health service system that utilizes technologies, e.g., artificial intelligence and big data, to alleviate the pressures on healthcare systems. Much recent research has focused on the automatic disease diagnosis and recognition and, typically, our research pays attention on automatic classifications for electrophysiological signals, which are measurements of the electrical activity. Specifically, for electrocardiogram (ECG) and electroencephalogram (EEG) data, we develop a series of algorithms for automatic cardiovascular disease (CVD) classification, emotion recognition and seizure detection. With the ECG signals obtained from wearable devices, the candidate developed novel signal processing and machine learning method for continuous monitoring of heart conditions. Compared to the traditional methods based on the devices at clinical settings, the developed method in this thesis is much more convenient to use. To identify arrhythmia patterns from the noisy ECG signals obtained through the wearable devices, CNN and LSTM are used, and a wavelet-based CNN is proposed to enhance the performance. An emotion recognition method with a single channel ECG is developed, where a novel exploitative and explorative GWO-SVM algorithm is proposed to achieve high performance emotion classification. The attractive part is that the proposed algorithm has the capability to learn the SVM hyperparameters automatically, and it can prevent the algorithm from falling into local solutions, thereby achieving better performance than existing algorithms. A novel EEG-signal based seizure detector is developed, where the EEG signals are transformed to the spectral-temporal domain, so that the dimension of the input features to the CNN can be significantly reduced, while the detector can still achieve superior detection performance

    Data-driven multivariate and multiscale methods for brain computer interface

    Get PDF
    This thesis focuses on the development of data-driven multivariate and multiscale methods for brain computer interface (BCI) systems. The electroencephalogram (EEG), the most convenient means to measure neurophysiological activity due to its noninvasive nature, is mainly considered. The nonlinearity and nonstationarity inherent in EEG and its multichannel recording nature require a new set of data-driven multivariate techniques to estimate more accurately features for enhanced BCI operation. Also, a long term goal is to enable an alternative EEG recording strategy for achieving long-term and portable monitoring. Empirical mode decomposition (EMD) and local mean decomposition (LMD), fully data-driven adaptive tools, are considered to decompose the nonlinear and nonstationary EEG signal into a set of components which are highly localised in time and frequency. It is shown that the complex and multivariate extensions of EMD, which can exploit common oscillatory modes within multivariate (multichannel) data, can be used to accurately estimate and compare the amplitude and phase information among multiple sources, a key for the feature extraction of BCI system. A complex extension of local mean decomposition is also introduced and its operation is illustrated on two channel neuronal spike streams. Common spatial pattern (CSP), a standard feature extraction technique for BCI application, is also extended to complex domain using the augmented complex statistics. Depending on the circularity/noncircularity of a complex signal, one of the complex CSP algorithms can be chosen to produce the best classification performance between two different EEG classes. Using these complex and multivariate algorithms, two cognitive brain studies are investigated for more natural and intuitive design of advanced BCI systems. Firstly, a Yarbus-style auditory selective attention experiment is introduced to measure the user attention to a sound source among a mixture of sound stimuli, which is aimed at improving the usefulness of hearing instruments such as hearing aid. Secondly, emotion experiments elicited by taste and taste recall are examined to determine the pleasure and displeasure of a food for the implementation of affective computing. The separation between two emotional responses is examined using real and complex-valued common spatial pattern methods. Finally, we introduce a novel approach to brain monitoring based on EEG recordings from within the ear canal, embedded on a custom made hearing aid earplug. The new platform promises the possibility of both short- and long-term continuous use for standard brain monitoring and interfacing applications

    Comprehensive Review on Detection and Classification of Power Quality Disturbances in Utility Grid With Renewable Energy Penetration

    Get PDF
    The global concern with power quality is increasing due to the penetration of renewable energy (RE) sources to cater the energy demands and meet de-carbonization targets. Power quality (PQ) disturbances are found to be more predominant with RE penetration due to the variable outputs and interfacing converters. There is a need to recognize and mitigate PQ disturbances to supply clean power to the consumer. This article presents a critical review of techniques used for detection and classification PQ disturbances in the utility grid with renewable energy penetration. The broad perspective of this review paper is to provide various concepts utilized for extraction of the features to detect and classify the PQ disturbances even in the noisy environment. More than 220 research publications have been critically reviewed, classified and listed for quick reference of the engineers, scientists and academicians working in the power quality area

    Deep fusion of multi-channel neurophysiological signal for emotion recognition and monitoring

    Get PDF
    How to fuse multi-channel neurophysiological signals for emotion recognition is emerging as a hot research topic in community of Computational Psychophysiology. Nevertheless, prior feature engineering based approaches require extracting various domain knowledge related features at a high time cost. Moreover, traditional fusion method cannot fully utilise correlation information between different channels and frequency components. In this paper, we design a hybrid deep learning model, in which the 'Convolutional Neural Network (CNN)' is utilised for extracting task-related features, as well as mining inter-channel and inter-frequency correlation, besides, the 'Recurrent Neural Network (RNN)' is concatenated for integrating contextual information from the frame cube sequence. Experiments are carried out in a trial-level emotion recognition task, on the DEAP benchmarking dataset. Experimental results demonstrate that the proposed framework outperforms the classical methods, with regard to both of the emotional dimensions of Valence and Arousal
    • …
    corecore