2,646 research outputs found

    3D medical volume segmentation using hybrid multiresolution statistical approaches

    Get PDF
    This article is available through the Brunel Open Access Publishing Fund. Copyright © 2010 S AlZu’bi and A Amira.3D volume segmentation is the process of partitioning voxels into 3D regions (subvolumes) that represent meaningful physical entities which are more meaningful and easier to analyze and usable in future applications. Multiresolution Analysis (MRA) enables the preservation of an image according to certain levels of resolution or blurring. Because of multiresolution quality, wavelets have been deployed in image compression, denoising, and classification. This paper focuses on the implementation of efficient medical volume segmentation techniques. Multiresolution analysis including 3D wavelet and ridgelet has been used for feature extraction which can be modeled using Hidden Markov Models (HMMs) to segment the volume slices. A comparison study has been carried out to evaluate 2D and 3D techniques which reveals that 3D methodologies can accurately detect the Region Of Interest (ROI). Automatic segmentation has been achieved using HMMs where the ROI is detected accurately but suffers a long computation time for its calculations

    Locally adaptive image denoising by a statistical multiresolution criterion

    Full text link
    We demonstrate how one can choose the smoothing parameter in image denoising by a statistical multiresolution criterion, both globally and locally. Using inhomogeneous diffusion and total variation regularization as examples for localized regularization schemes, we present an efficient method for locally adaptive image denoising. As expected, the smoothing parameter serves as an edge detector in this framework. Numerical examples illustrate the usefulness of our approach. We also present an application in confocal microscopy

    Combining local regularity estimation and total variation optimization for scale-free texture segmentation

    Get PDF
    Texture segmentation constitutes a standard image processing task, crucial to many applications. The present contribution focuses on the particular subset of scale-free textures and its originality resides in the combination of three key ingredients: First, texture characterization relies on the concept of local regularity ; Second, estimation of local regularity is based on new multiscale quantities referred to as wavelet leaders ; Third, segmentation from local regularity faces a fundamental bias variance trade-off: In nature, local regularity estimation shows high variability that impairs the detection of changes, while a posteriori smoothing of regularity estimates precludes from locating correctly changes. Instead, the present contribution proposes several variational problem formulations based on total variation and proximal resolutions that effectively circumvent this trade-off. Estimation and segmentation performance for the proposed procedures are quantified and compared on synthetic as well as on real-world textures

    Multiscale likelihood analysis and complexity penalized estimation

    Full text link
    We describe here a framework for a certain class of multiscale likelihood factorizations wherein, in analogy to a wavelet decomposition of an L^2 function, a given likelihood function has an alternative representation as a product of conditional densities reflecting information in both the data and the parameter vector localized in position and scale. The framework is developed as a set of sufficient conditions for the existence of such factorizations, formulated in analogy to those underlying a standard multiresolution analysis for wavelets, and hence can be viewed as a multiresolution analysis for likelihoods. We then consider the use of these factorizations in the task of nonparametric, complexity penalized likelihood estimation. We study the risk properties of certain thresholding and partitioning estimators, and demonstrate their adaptivity and near-optimality, in a minimax sense over a broad range of function spaces, based on squared Hellinger distance as a loss function. In particular, our results provide an illustration of how properties of classical wavelet-based estimators can be obtained in a single, unified framework that includes models for continuous, count and categorical data types

    Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering

    Get PDF
    This study introduces a new method for detecting and sorting spikes from multiunit recordings. The method combines the wavelet transform, which localizes distinctive spike features, with superparamagnetic clustering, which allows automatic classification of the data without assumptions such as low variance or gaussian distributions. Moreover, an improved method for setting amplitude thresholds for spike detection is proposed. We describe several criteria for implementation that render the algorithm unsupervised and fast. The algorithm is compared to other conventional methods using several simulated data sets whose characteristics closely resemble those of in vivo recordings. For these data sets, we found that the proposed algorithm outperformed conventional methods

    Adaptive transfer functions: improved multiresolution visualization of medical models

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00371-016-1253-9Medical datasets are continuously increasing in size. Although larger models may be available for certain research purposes, in the common clinical practice the models are usually of up to 512x512x2000 voxels. These resolutions exceed the capabilities of conventional GPUs, the ones usually found in the medical doctors’ desktop PCs. Commercial solutions typically reduce the data by downsampling the dataset iteratively until it fits the available target specifications. The data loss reduces the visualization quality and this is not commonly compensated with other actions that might alleviate its effects. In this paper, we propose adaptive transfer functions, an algorithm that improves the transfer function in downsampled multiresolution models so that the quality of renderings is highly improved. The technique is simple and lightweight, and it is suitable, not only to visualize huge models that would not fit in a GPU, but also to render not-so-large models in mobile GPUs, which are less capable than their desktop counterparts. Moreover, it can also be used to accelerate rendering frame rates using lower levels of the multiresolution hierarchy while still maintaining high-quality results in a focus and context approach. We also show an evaluation of these results based on perceptual metrics.Peer ReviewedPostprint (author's final draft

    Human perception-oriented segmentation for triangle meshes

    Get PDF
    A segmentação de malhas é um tópico importante de investigação em computação gráfica, em particular em modelação geométrica. Isto deve-se ao facto de as técnicas de segmentaçãodemalhasteremváriasaplicações,nomeadamentenaproduçãodefilmes, animaçãoporcomputador, realidadevirtual, compressãodemalhas, assimcomoemjogosdigitais. Emconcreto, asmalhastriangularessãoamplamenteusadasemaplicações interativas, visto que sua segmentação em partes significativas (também designada por segmentação significativa, segmentação perceptiva ou segmentação perceptualmente significativa ) é muitas vezes vista como uma forma de acelerar a interação com o utilizador ou a deteção de colisões entre esses objetos 3D definidos por uma malha, bem como animar uma ou mais partes significativas (por exemplo, a cabeça de uma personagem) de um dado objeto, independentemente das restantes partes. Acontece que não se conhece nenhuma técnica capaz de segmentar correctamente malhas arbitrárias −ainda que restritas aos domínios de formas livres e não-livres− em partes significativas. Algumas técnicas são mais adequadas para objetos de forma não-livre (por exemplo, peças mecânicas definidas geometricamente por quádricas), enquanto outras são mais talhadas para o domínio dos objectos de forma livre. Só na literatura recente surgem umas poucas técnicas que se aplicam a todo o universo de objetos de forma livre e não-livre. Pior ainda é o facto de que a maioria das técnicas de segmentação não serem totalmente automáticas, no sentido de que quase todas elas exigem algum tipo de pré-requisitos e assistência do utilizador. Resumindo, estes três desafios relacionados com a proximidade perceptual, generalidade e automação estão no cerne do trabalho descrito nesta tese. Para enfrentar estes desafios, esta tese introduz o primeiro algoritmo de segmentação baseada nos contornos ou fronteiras dos segmentos, cuja técnica se inspira nas técnicas de segmentação baseada em arestas, tão comuns em análise e processamento de imagem,porcontraposiçãoàstécnicasesegmentaçãobaseadaemregiões. Aideiaprincipal é a de encontrar em primeiro lugar a fronteira de cada região para, em seguida, identificar e agrupar todos os seus triângulos internos. As regiões da malha encontradas correspondem a saliências e reentrâncias, que não precisam de ser estritamente convexas, nem estritamente côncavas, respectivamente. Estas regiões, designadas regiões relaxadamenteconvexas(ousaliências)eregiõesrelaxadamentecôncavas(oureentrâncias), produzem segmentações que são menos sensíveis ao ruído e, ao mesmo tempo, são mais intuitivas do ponto de vista da perceção humana; por isso, é designada por segmentação orientada à perceção humana (ou, human perception- oriented (HPO), do inglês). Além disso, e ao contrário do atual estado-da-arte da segmentação de malhas, a existência destas regiões relaxadas torna o algoritmo capaz de segmentar de maneira bastante plausível tanto objectos de forma não-livre como objectos de forma livre. Nesta tese, enfrentou-se também um quarto desafio, que está relacionado com a fusão de segmentação e multi-resolução de malhas. Em boa verdade, já existe na literatura uma variedade grande de técnicas de segmentação, bem como um número significativo de técnicas de multi-resolução, para malhas triangulares. No entanto, não é assim tão comum encontrar estruturas de dados e algoritmos que façam a fusão ou a simbiose destes dois conceitos, multi-resolução e segmentação, num único esquema multi-resolução que sirva os propósitos das aplicações que lidam com malhas simples e segmentadas, sendo que neste contexto se entende que uma malha simples é uma malha com um único segmento. Sendo assim, nesta tese descreve-se um novo esquema (entenda-seestruturasdedadosealgoritmos)demulti-resoluçãoesegmentação,designado por extended Ghost Cell (xGC). Este esquema preserva a forma das malhas, tanto em termos globais como locais, ou seja, os segmentos da malha e as suas fronteiras, bem como os seus vincos e ápices são preservados, não importa o nível de resolução que usamos durante a/o simplificação/refinamento da malha. Além disso, ao contrário de outros esquemas de segmentação, tornou-se possível ter segmentos adjacentes com dois ou mais níveis de resolução de diferença. Isto é particularmente útil em animação por computador, compressão e transmissão de malhas, operações de modelação geométrica, visualização científica e computação gráfica. Em suma, esta tese apresenta um esquema genérico, automático, e orientado à percepção humana, que torna possível a simbiose dos conceitos de segmentação e multiresolução de malhas trianguladas que sejam representativas de objectos 3D.The mesh segmentation is an important topic in computer graphics, in particular in geometric computing. This is so because mesh segmentation techniques find many applications in movies, computer animation, virtual reality, mesh compression, and games. Infact, trianglemeshesarewidelyusedininteractiveapplications, sothattheir segmentation in meaningful parts (i.e., human-perceptually segmentation, perceptive segmentationormeaningfulsegmentation)isoftenseenasawayofspeedinguptheuser interaction, detecting collisions between these mesh-covered objects in a 3D scene, as well as animating one or more meaningful parts (e.g., the head of a humanoid) independently of the other parts of a given object. It happens that there is no known technique capable of correctly segmenting any mesh into meaningful parts. Some techniques are more adequate for non-freeform objects (e.g., quadricmechanicalparts), whileothersperformbetterinthedomainoffreeform objects. Only recently, some techniques have been developed for the entire universe of objects and shapes. Even worse it is the fact that most segmentation techniques are not entirely automated in the sense that almost all techniques require some sort of pre-requisites and user assistance. Summing up, these three challenges related to perceptual proximity, generality and automation are at the core of the work described in this thesis. In order to face these challenges, we have developed the first contour-based mesh segmentation algorithm that we may find in the literature, which is inspired in the edgebased segmentation techniques used in image analysis, as opposite to region-based segmentation techniques. Its leading idea is to firstly find the contour of each region, and then to identify and collect all of its inner triangles. The encountered mesh regions correspond to ups and downs, which do not need to be strictly convex nor strictly concave, respectively. These regions, called relaxedly convex regions (or saliences) and relaxedly concave regions (or recesses), produce segmentations that are less-sensitive to noise and, at the same time, are more intuitive from the human point of view; hence it is called human perception- oriented (HPO) segmentation. Besides, and unlike the current state-of-the-art in mesh segmentation, the existence of these relaxed regions makes the algorithm suited to both non-freeform and freeform objects. In this thesis, we have also tackled a fourth challenge, which is related with the fusion of mesh segmentation and multi-resolution. Truly speaking, a plethora of segmentation techniques, as well as a number of multiresolution techniques, for triangle meshes already exist in the literature. However, it is not so common to find algorithms and data structures that fuse these two concepts, multiresolution and segmentation, into a symbiotic multi-resolution scheme for both plain and segmented meshes, in which a plainmeshisunderstoodasameshwithasinglesegment. So, weintroducesuchanovel multiresolution segmentation scheme, called extended Ghost Cell (xGC) scheme. This scheme preserves the shape of the meshes in both global and local terms, i.e., mesh segments and their boundaries, as well as creases and apices are preserved, no matter the level of resolution we use for simplification/refinement of the mesh. Moreover, unlike other segmentation schemes, it was made possible to have adjacent segments with two or more resolution levels of difference. This is particularly useful in computer animation, mesh compression and transmission, geometric computing, scientific visualization, and computer graphics. In short, this thesis presents a fully automatic, general, and human perception-oriented scheme that symbiotically integrates the concepts of mesh segmentation and multiresolution
    corecore