67 research outputs found

    Generalized PVOā€based dynamic block reversible data hiding for secure transmission using firefly algorithm

    Get PDF
    In this paper, we proposed a novel generalized pixel value orderingā€“based reversible data hiding using firefly algorithm (GPVOFA). The sequence of minimum and maximum number pixels value has been used to embed the secret data while prediction and modification are held on minimum, and the maximum number of pixel blocks is used to embed the secret data into multiple bits. The host image is divided into the size of noncoinciding dynamic blocks on the basis of firefly quadtree partition, whereas rough blocks are divided into a larger size; moreover, providing more embedding capacity used small flat blocks size and optimal location in the block to write the information. Our proposed method becomes able to embed large data into a host image with low distortion. The rich experimental results are better, as compared with related preceding arts

    Secure medical image watermarking based on reversible data hiding with Arnold's cat map

    Get PDF
    The process of restoring medical images to their original form after the extraction process in application watermarking is crucial for ensuring their authenticity. Inaccurate diagnoses can occur due to distortions in medical images from conventional data embedding applications. To address this issue, reversible data hiding (RDH) method has been proposed by several researchers in recent years to embed data in medical images. After the extraction process, images can be restored to their original form with a reversible data-hiding method. In the past few years, several RDH methods have been rapidly developed, which are based on the concept of difference expansion (DE). However, it is crucial to pay attention to the security of the medical image watermarking method, the embedded data with RDH method can be easily modified, accessed, and altered by unauthorized individuals if they know the employed method. This research suggests a new approach to secure the RDH method through the use of Chaotic Map-based Arnold's Cat Map algorithms on the medical images. Data embedding was performed on random medical images using a DE method. Four gray-scale medical image modalities were used to assess the proposed method's efficacy. In our approach, we can incorporate capacity up to 0.62 bpp while maintaining a visual quality up to 41.02 dB according to PSNR and 0.9900 according to SSIM. The results indicated that it can enhance the security of the RDH method while retaining the ability to embed data and preserving the visual appearance of the medical images

    Framework for reversible data hiding using cost-effective encoding system for video steganography

    Get PDF
    Importances of reversible data hiding practices are always higher in contrast to any conventional data hiding schemes owing to its capability to generate distortion free cover media. Review of existing approaches on reversible data hiding approaches shows variable scheme mainly focussing on the embedding mechanism; however, such schemes could be furthermore improved using encoding scheme for optimal embedding performance. Therefore, the proposed manuscript discusses about a cost-effective scheme where a novel encoding scheme has been used with larger block sizes which reduces the dependencies over larger number of blocks. Further a gradient-based image registration technique is applied to ensure higher quality of the reconstructed signal over the decoding end. The study outcome shows that proposed data hiding technique is proven better than existing data hiding scheme with good balance between security and restored signal quality upon extraction of data

    Reversible data hiding in digital images

    Get PDF
    Nowadays the role of data hiding has become more eminent. The data safety on the Internet is known to be a challenge due to frequent hacker attacks and data tampering during transmission. In addition to encryption schemes, data hiding has an important role in secret message transmission, authentication, and copyright protection. This thesis presents in-depth state-of-the-art data hiding schemes evaluation, and based on the conducted analysis describes the proposed method, which seek the maximum improvement. We utilize a causal predictor and a local activity indicator with two embedding possibilities based on difference expansion and histogram shifting. Moreover, the secret data from Galois ļ¬eld GF(q),q ā‰¤ 2 in order to embed more than one bit per pixel in a single run of the algorithm is considered. We extend our data hiding technique to the transform domain complaint with JPEG coding. In the experimental part, the proposed method is compared with state-of-the-art reversible data hiding schemes on a vast set of test images, where our approach produces better embedding capacity versus image quality performance. We conclude that proposed scheme achieves efļ¬ciency in terms of redundancy, which is decreased due to the derived conditions for location map free data embedding, invariability to the choice of predictor, and high payload capacity of more than 1 bit per pixel in a single run of the algorithm

    Optimization of medical image steganography using n-decomposition genetic algorithm

    Get PDF
    Protecting patients' confidential information is a critical concern in medical image steganography. The Least Significant Bits (LSB) technique has been widely used for secure communication. However, it is susceptible to imperceptibility and security risks due to the direct manipulation of pixels, and ASCII patterns present limitations. Consequently, sensitive medical information is subject to loss or alteration. Despite attempts to optimize LSB, these issues persist due to (1) the formulation of the optimization suffering from non-valid implicit constraints, causing inflexibility in reaching optimal embedding, (2) lacking convergence in the searching process, where the message length significantly affects the size of the solution space, and (3) issues of application customizability where different data require more flexibility in controlling the embedding process. To overcome these limitations, this study proposes a technique known as an n-decomposition genetic algorithm. This algorithm uses a variable-length search to identify the best location to embed the secret message by incorporating constraints to avoid local minimum traps. The methodology consists of five main phases: (1) initial investigation, (2) formulating an embedding scheme, (3) constructing a decomposition scheme, (4) integrating the schemes' design into the proposed technique, and (5) evaluating the proposed technique's performance based on parameters using medical datasets from kaggle.com. The proposed technique showed resistance to statistical analysis evaluated using Reversible Statistical (RS) analysis and histogram. It also demonstrated its superiority in imperceptibility and security measured by MSE and PSNR to Chest and Retina datasets (0.0557, 0.0550) and (60.6696, 60.7287), respectively. Still, compared to the results obtained by the proposed technique, the benchmark outperforms the Brain dataset due to the homogeneous nature of the images and the extensive black background. This research has contributed to genetic-based decomposition in medical image steganography and provides a technique that offers improved security without compromising efficiency and convergence. However, further validation is required to determine its effectiveness in real-world applications

    An improved image steganography scheme based on distinction grade value and secret message encryption

    Get PDF
    Steganography is an emerging and greatly demanding technique for secure information communication over the internet using a secret cover object. It can be used for a wide range of applications such as safe circulation of secret data in intelligence, industry, health care, habitat, online voting, mobile banking and military. Commonly, digital images are used as covers for the steganography owing to their redundancy in the representation, making them hidden to the intruders, hackers, adversaries, unauthorized users. Still, any steganography system launched over the Internet can be cracked upon recognizing the stego cover. Thus, the undetectability that involves data imperceptibility or concealment and security is the significant trait of any steganography system. Presently, the design and development of an effective image steganography system are facing several challenges including low capacity, poor robustness and imperceptibility. To surmount such limitations, it is important to improve the capacity and security of the steganography system while maintaining a high signal-to-noise ratio (PSNR). Based on these factors, this study is aimed to design and develop a distinction grade value (DGV) method to effectively embed the secret data into a cover image for achieving a robust steganography scheme. The design and implementation of the proposed scheme involved three phases. First, a new encryption method called the shuffle the segments of secret message (SSSM) was incorporated with an enhanced Huffman compression algorithm to improve the text security and payload capacity of the scheme. Second, the Fibonacci-based image transformation decomposition method was used to extend the pixel's bit from 8 to 12 for improving the robustness of the scheme. Third, an improved embedding method was utilized by integrating a random block/pixel selection with the DGV and implicit secret key generation for enhancing the imperceptibility of the scheme. The performance of the proposed scheme was assessed experimentally to determine the imperceptibility, security, robustness and capacity. The standard USC-SIPI images dataset were used as the benchmarking for the performance evaluation and comparison of the proposed scheme with the previous works. The resistance of the proposed scheme was tested against the statistical, X2 , Histogram and non-structural steganalysis detection attacks. The obtained PSNR values revealed the accomplishment of higher imperceptibility and security by the proposed DGV scheme while a higher capacity compared to previous works. In short, the proposed steganography scheme outperformed the commercially available data hiding schemes, thereby resolved the existing issues

    Data Hiding in Digital Video

    Get PDF
    With the rapid development of digital multimedia technologies, an old method which is called steganography has been sought to be a solution for data hiding applications such as digital watermarking and covert communication. Steganography is the art of secret communication using a cover signal, e.g., video, audio, image etc., whereas the counter-technique, detecting the existence of such as a channel through a statistically trained classifier, is called steganalysis. The state-of-the art data hiding algorithms utilize features; such as Discrete Cosine Transform (DCT) coefficients, pixel values, motion vectors etc., of the cover signal to convey the message to the receiver side. The goal of embedding algorithm is to maximize the number of bits sent to the decoder side (embedding capacity) with maximum robustness against attacks while keeping the perceptual and statistical distortions (security) low. Data Hiding schemes are characterized by these three conflicting requirements: security against steganalysis, robustness against channel associated and/or intentional distortions, and the capacity in terms of the embedded payload. Depending upon the application it is the designer\u27s task to find an optimum solution amongst them. The goal of this thesis is to develop a novel data hiding scheme to establish a covert channel satisfying statistical and perceptual invisibility with moderate rate capacity and robustness to combat steganalysis based detection. The idea behind the proposed method is the alteration of Video Object (VO) trajectory coordinates to convey the message to the receiver side by perturbing the centroid coordinates of the VO. Firstly, the VO is selected by the user and tracked through the frames by using a simple region based search strategy and morphological operations. After the trajectory coordinates are obtained, the perturbation of the coordinates implemented through the usage of a non-linear embedding function, such as a polar quantizer where both the magnitude and phase of the motion is used. However, the perturbations made to the motion magnitude and phase were kept small to preserve the semantic meaning of the object motion trajectory. The proposed method is well suited to the video sequences in which VOs have smooth motion trajectories. Examples of these types could be found in sports videos in which the ball is the focus of attention and exhibits various motion types, e.g., rolling on the ground, flying in the air, being possessed by a player, etc. Different sports video sequences have been tested by using the proposed method. Through the experimental results, it is shown that the proposed method achieved the goal of both statistical and perceptual invisibility with moderate rate embedding capacity under AWGN channel with varying noise variances. This achievement is important as the first step for both active and passive steganalysis is the detection of the existence of covert channel. This work has multiple contributions in the field of data hiding. Firstly, it is the first example of a data hiding method in which the trajectory of a VO is used. Secondly, this work has contributed towards improving steganographic security by providing new features: the coordinate location and semantic meaning of the object

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Entropy in Image Analysis II

    Get PDF
    Image analysis is a fundamental task for any application where extracting information from images is required. The analysis requires highly sophisticated numerical and analytical methods, particularly for those applications in medicine, security, and other fields where the results of the processing consist of data of vital importance. This fact is evident from all the articles composing the Special Issue "Entropy in Image Analysis II", in which the authors used widely tested methods to verify their results. In the process of reading the present volume, the reader will appreciate the richness of their methods and applications, in particular for medical imaging and image security, and a remarkable cross-fertilization among the proposed research areas
    • ā€¦
    corecore